On a class of self-affine sets on the plane given by six homotheties
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 1, pp. 519-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a class of self-affine sets on the plane determined by six homotheties. Centers of these homotheties are located at the vertices of a regular hexagon $P$, and the homothetic coefficients belong to the interval $(0,1)$. One must note that equality of homothetic coefficients is not assumed. A self-affine set on the plane is a non-empty compact subset that is invariant with respect to the considered family of homotheties. The existence and uniqueness of such a set is provided by Hutchinson's theorem. The goal of present work is to investigate the influence of homothetic coefficients on the properties of a self-affine set. To describe the set, barycentric coordinates on the plane are introduced. The conditions are found under which the self-affine set is: a) the hexagon $P$; b) a Cantor set in the hexagon $P$. The Minkowski and the Hausdorff dimensions of the indicated sets are calculated. The conditions providing vanishing Lebesgue measure of self-affine set are obtained. Examples of self-affine sets from the considered class are presented.
Keywords: self-affine set, homothety, Cantor set, iterated function system, attractor
Mots-clés : Lebesgue measure.
@article{SVMO_2023_25_1_a0,
     author = {A. V. Bagaev},
     title = {On a class of self-affine sets on the plane given by six homotheties},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {519--530},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a0/}
}
TY  - JOUR
AU  - A. V. Bagaev
TI  - On a class of self-affine sets on the plane given by six homotheties
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2023
SP  - 519
EP  - 530
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a0/
LA  - ru
ID  - SVMO_2023_25_1_a0
ER  - 
%0 Journal Article
%A A. V. Bagaev
%T On a class of self-affine sets on the plane given by six homotheties
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2023
%P 519-530
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a0/
%G ru
%F SVMO_2023_25_1_a0
A. V. Bagaev. On a class of self-affine sets on the plane given by six homotheties. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 1, pp. 519-530. http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a0/

[1] J. E. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[2] R. M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000, 352 pp.

[3] K. J. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, New York, 2014, 400 pp. | MR | Zbl

[4] M. Hata, “On the structure of self-similar sets”, Japan J. Appl. Math., 2 (1985), 381–414 | DOI | MR | Zbl

[5] M. F. Barnsley, Fractals everywhere, Academic Press, Boston, 1988, 394 pp. | MR | Zbl

[6] D. Broomhead, J. Montaldi, N. Sidorov, “Golden gaskets: variations on the Sierpinski sieve”, Nonlinearity, 17:4 (2004), 1455–-1480 | DOI | MR | Zbl

[7] Th. Jordan, “Dimension of fat Sierpinski gaskets”, Real Anal. Exchange., 31:1 (2005), 97–110 | DOI | MR

[8] A.V. Bagaev, A.V. Kiseleva, “Attraktory sistem trekh iterirovannykh gomotetii evklidovoi ploskosti”, XXIX Vseros. nauch.-prakt. konf. «KOGRAF-2019», Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E.Alekseeva, N.Novgorod, 2019, 136–140

[9] A.V. Bagaev, A.V. Kiseleva, “O mnogomernykh analogakh treugolnika Serpinskogo”, XXVI Mezhdunar. nauch.-tekhn. konf. «Informatsionnye sistemy i tekhnologii-2020», Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E.Alekseeva, N.Novgorod, 2020, 1148–1152

[10] A.V. Bagaev, A.V. Kiseleva, “O mere Lebega attraktorov, zadannykh gomotetiyami s affinno nezavisimymi tsentrami”, XXVI Mezhdunar. nauch.-tekhn. konf. «Informatsionnye sistemy i tekhnologii-2021», Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E.Alekseeva, N.Novgorod, 2021, 945–948