Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2023_25_1_a0, author = {A. V. Bagaev}, title = {On a class of self-affine sets on the plane given by six homotheties}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {519--530}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a0/} }
TY - JOUR AU - A. V. Bagaev TI - On a class of self-affine sets on the plane given by six homotheties JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2023 SP - 519 EP - 530 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a0/ LA - ru ID - SVMO_2023_25_1_a0 ER -
A. V. Bagaev. On a class of self-affine sets on the plane given by six homotheties. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 25 (2023) no. 1, pp. 519-530. http://geodesic.mathdoc.fr/item/SVMO_2023_25_1_a0/
[1] J. E. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[2] R. M. Kronover, Fraktaly i khaos v dinamicheskikh sistemakh. Osnovy teorii, Postmarket, M., 2000, 352 pp.
[3] K. J. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, New York, 2014, 400 pp. | MR | Zbl
[4] M. Hata, “On the structure of self-similar sets”, Japan J. Appl. Math., 2 (1985), 381–414 | DOI | MR | Zbl
[5] M. F. Barnsley, Fractals everywhere, Academic Press, Boston, 1988, 394 pp. | MR | Zbl
[6] D. Broomhead, J. Montaldi, N. Sidorov, “Golden gaskets: variations on the Sierpinski sieve”, Nonlinearity, 17:4 (2004), 1455–-1480 | DOI | MR | Zbl
[7] Th. Jordan, “Dimension of fat Sierpinski gaskets”, Real Anal. Exchange., 31:1 (2005), 97–110 | DOI | MR
[8] A.V. Bagaev, A.V. Kiseleva, “Attraktory sistem trekh iterirovannykh gomotetii evklidovoi ploskosti”, XXIX Vseros. nauch.-prakt. konf. «KOGRAF-2019», Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E.Alekseeva, N.Novgorod, 2019, 136–140
[9] A.V. Bagaev, A.V. Kiseleva, “O mnogomernykh analogakh treugolnika Serpinskogo”, XXVI Mezhdunar. nauch.-tekhn. konf. «Informatsionnye sistemy i tekhnologii-2020», Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E.Alekseeva, N.Novgorod, 2020, 1148–1152
[10] A.V. Bagaev, A.V. Kiseleva, “O mere Lebega attraktorov, zadannykh gomotetiyami s affinno nezavisimymi tsentrami”, XXVI Mezhdunar. nauch.-tekhn. konf. «Informatsionnye sistemy i tekhnologii-2021», Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E.Alekseeva, N.Novgorod, 2021, 945–948