Analysis of methods for modeling human daily thermometry data
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 4, pp. 469-484.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical and computer modeling of daily thermometry allows to study processes of human thermal homeostasis more deeply. In practice, thermometry data is obtained using a digital thermometer, which autonomously reads the temperature of human skin in certain time intervals. The aim of present work is to analyse the methods of modeling and processing of human daily thermometry data. The first method consists in applying linear discrete stochastic models in the state space with Gaussian noises and known vector of input actions, while the estimation of the state vector is performed by discrete covariance Kalman filter. The second method assumes that the vector of input actions is unknown, and the S. Gillijns and B. D. Moor algorithm is used to process daily thermometry data. An alternative option is to use a model with an extended state vector and a Kalman filtering algorithm. The third method takes into account the presence of anomalous measurements (outliers) in the measurement data, and correntropy filter is proposed for their effective filtering. Numerical experiments for modeling and processing of daily thermometry data in MATLAB were carried out in order to compare the quality of discrete filtering algorithms. Modeling of thermometry data was carried out using a three-dimensional model 3dDRCM (3-dimension Discrete-time Real-valued Canonical Model). The results obtained can be used in the study of human daily thermometry processes, for example, to study the reaction of the athlete’s body to the received load.
Keywords: daily thermometry, thermal homeostasis, linear discrete stochastic systems, Kalman filter.
Mots-clés : discrete filtration
@article{SVMO_2022_24_4_a4,
     author = {M. A. Shugurova and A. V. Tsyganov and J. V. Tsyganova},
     title = {Analysis of methods for modeling human daily thermometry data},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {469--484},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_4_a4/}
}
TY  - JOUR
AU  - M. A. Shugurova
AU  - A. V. Tsyganov
AU  - J. V. Tsyganova
TI  - Analysis of methods for modeling human daily thermometry data
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 469
EP  - 484
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_4_a4/
LA  - ru
ID  - SVMO_2022_24_4_a4
ER  - 
%0 Journal Article
%A M. A. Shugurova
%A A. V. Tsyganov
%A J. V. Tsyganova
%T Analysis of methods for modeling human daily thermometry data
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 469-484
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_4_a4/
%G ru
%F SVMO_2022_24_4_a4
M. A. Shugurova; A. V. Tsyganov; J. V. Tsyganova. Analysis of methods for modeling human daily thermometry data. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 4, pp. 469-484. http://geodesic.mathdoc.fr/item/SVMO_2022_24_4_a4/

[1] N. N. Zakhareva, A. Alkhakim, “Vozrastnye osobennosti morfofunktsionalnogo statusa i temperaturnogo gomeostaza futbolistov vysokoi kvalifikatsii”, Chelovek. Sport. Meditsina, 19:1 (2019), 135–139 | MR

[2] G. Kelly, “Body temperature variability (Part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging”, Altern. Med. Rev., 11:4 (2006), 278–293

[3] I. V. Semushin, J. V. Tsyganova, A. G. Skovikov, “Identification of a simple homeostasis stochastic model based on active principle of adaptation”, Proceedings of International Conference “Applied Stochastic Models and Data Analysis ASMDA 2013 DEMOGRAPHICS 2013”, Barcelona, 2013, 775–783

[4] I. V. Semushin, J. V. Tsyganova, M. V. Kulikova, A. V. Tsyganov, A. B. Peskov, “Identification of Human Body Daily Temperature Dynamics via Minimum State Prediction Error Method”, Proceedings of ECC2016, European Control Conference (Aalborg, Denmark. June 29–July 1, 2016), IEEE, 2016, 2429–2434 | DOI

[5] Yu. V. Tsyganova, “Ob odnoi modeli sutochnoi termometrii teplovogo gomeostaza cheloveka”, Pervaya Mezhdunarodnaya zaochnaya nauchno-prakticheskaya konferentsiya «Fundamentalnye i prikladnye issledovaniya po prioritetnym napravleniyam bioekologii i biotekhnologii», UlGPU im. I.N. Ulyanova, Ulyanovsk, 2015, 167–170

[6] A. V. Tsyganov, Yu. V. Tsyganova, “Modelirovanie i obrabotka dannykh sutochnoi termometrii”, Povolzhskii pedagogicheskii poisk, 31:1 (2020), 143–149 | MR

[7] R. Izanloo, S. A. Fakoorian, H. S. Yazdi, D. Simon, “Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise”, Proceedings of the 2016 Annual Conference on Information Science and Systems (CISS), 2016, 500–505 | DOI

[8] Yu. M. Krolivetskaya, E. S. Petrova, “Postroenie stokhasticheskikh modelei teplovogo gomeostaza cheloveka”, Vestn. Astrakhan. gos. tekhn. un-ta. Ser. upravlenie, vychisl. tekhn. inform., 2014, no. 1, 140–152

[9] M. A. Shugurova, “Analiz svoistv upravlyaemosti i nablyudaemosti matematicheskikh modelei sutochnoi termometrii”, Uchenye zapiski UlGU. Ser. Matematika i informatsionnye tekhnologii., 2021, no. 2, 97–104

[10] I. V. Semushin, Yu. V. Tsyganova, “Dynamical physically structured data modeling vs. classical time series analysis: A case study related to clinical trial data analysis”, Journal of Physics: Conference Series, 1368 (2019), 052028 | DOI

[11] M. S. Grewal, A. P. Andrews, Kalman filtering: Theory and Practice Using MATLAB, Prentice Hall, New Jersey, 2001, 401 pp. | MR

[12] A. V. Tsyganov, Yu. V. Tsyganova, I. V. Stolyarova, “Matematicheskoe i kompyuternoe modelirovanie sutochnoi termometrii teplovogo gomeostaza zdorovogo cheloveka”, Teoriya i praktika fizicheskoi kultury, 2019, no. 2, 65–67

[13] S. Gillijns, B. D. Moor, “Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough”, Automatica, 43:5 (2007), 934–937 | DOI | MR