Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_4_a0, author = {V. I. Zabotin and P. A. Chernyshevsky}, title = {Continuous global optimization of multivariable functions based on {Sergeev} and {Kvasov} diagonal approach}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {399--418}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_4_a0/} }
TY - JOUR AU - V. I. Zabotin AU - P. A. Chernyshevsky TI - Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 399 EP - 418 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_4_a0/ LA - ru ID - SVMO_2022_24_4_a0 ER -
%0 Journal Article %A V. I. Zabotin %A P. A. Chernyshevsky %T Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2022 %P 399-418 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2022_24_4_a0/ %G ru %F SVMO_2022_24_4_a0
V. I. Zabotin; P. A. Chernyshevsky. Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 4, pp. 399-418. http://geodesic.mathdoc.fr/item/SVMO_2022_24_4_a0/
[1] S. A. Piyavskii, “Odin algoritm otyskaniya absolyutnogo minimuma funktsii”, Teoriya optimalnykh reshenii, 2 (1967), 13–24 | MR
[2] S. A. Piyavskii, “Odin algoritm otyskaniya absolyutnogo ekstremuma funktsii”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 57–67 | MR
[3] Yu. G. Evtushenko, “Chislennyi metod poiska globalnogo ekstremuma funktsii (perebor na neravnomernoi setke)”, Zh. vychisl. matem. i matem. fiz., 11:6 (1971), 38–54
[4] B. Shubert, “A sequential method seeking the global maximum of a function”, SIAM J. Numer. Anal., 9:3 (1972), 379–388 | DOI | MR
[5] R. G. Strongin, Chislennye metody v mnogoekstremalnykh zadachakh, Nauka, Moskva, 1978, 240 pp.
[6] Ya.D. Sergeev , D.E. Kvasov, Diagonalnye metody globalnoi optimizatsii, FIZMATLIT, M., 2008, 352 pp.
[7] B. Gelbaum,Dzh. Olmsted, Kontrprimery v analize, Mir, M., 1962, 224 pp.
[8] R. J. Vanderbei, “Extension of Piyavskii’s algorithm to continuous global optimization”, Journal of Global Optimization, 14 (1999), 205–216 | DOI | MR
[9] S. Romaguera, M. Sanchis, “Semi-Lipschitz functions and best approximation in quasi-metric space”, J. Approx. Theory., 103:2 (2000), 292–301 | DOI | MR
[10] E. Jouini, “Generalized Lipschitz functions”, Nonlinear Anal., 41 (2000), 371–382 | DOI | MR
[11] M.A. Sadygov, “Zadachi na ekstremum c ogranicheniyami v metricheskom prostranstve”, DAN, 52:5 (2013), 490–493
[12] Y. D. Sergeyev, A. Candelieri, D. E. Kvasov, R. Perego, “Safe global optimization of expensive noisy black-box functions in the $\delta $-Lipschitz framework”, Soft. Comput., 24 (2020), 17715–17735 | DOI
[13] V.I. Zabotin, P.A. Chernyshevskii, “Dve modifikatsii obobschennogo metoda Piyavskogo poiska globalnogo minimuma nepreryvnoi na otrezke funktsii i ikh skhodimost”, Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Prikladnaya matematika, 3 (2021), 70–85
[14] N. K. Arutyunova, “Metod Evtushenko poiska globalnogo minimuma $\varepsilon $-lipshitsevoi funktsii i ego prilozheniya”, Vestnik KGTU im. A.N. Tupoleva, 2 (2013), 154–157
[15] N. K. Arutyunova, A. M. Dulliev, V. I. Zabotin, “Models and methods for three external ballistics inverse problems”, Vestnik yuzhno-uralskogo gosudarstvennogo universiteta. Seriya: matematicheskoe modelirovanie i programmirovanie, 10:4 (2017), 78–91
[16] V. I. Zabotin, P. A. Chernyshevskij, “Extension of Strongin’s global optimization algorithm to a function continuous on a compact interval”, Computer Research and Modeling, 11:6 (2019), 1111–1119 | DOI
[17] N. K. Arutyunova, A. M. Dulliev, V. I. Zabotin, “Global optimization of multivariable functions satisfying the Vanderbei condition”, J. Appl. Math. Comput., 68:3 (2022), 1135–1161 | DOI | MR
[18] V.I. Zabotin, P.A. Chernyshevskii, “Algoritm vychisleniya minimalnoi otsenki $\varepsilon $-postoyannoi Lipshitsa nepreryvnoi funktsii”, Vestnik KGTU im. A.N. Tupoleva, 2 (2018), 127–132
[19] Y. D. Sergeyev, “Efficient strategy for adaptive partition of N-dimensional intervals in the framework of diagonal algorithms”, Journal of Optimization Theory and Applications, 107 (2000), 145–168 | DOI | MR