Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_3_a4, author = {E. D. Tsapko}, title = {Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {304--316}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a4/} }
TY - JOUR AU - E. D. Tsapko TI - Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 304 EP - 316 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a4/ LA - ru ID - SVMO_2022_24_3_a4 ER -
%0 Journal Article %A E. D. Tsapko %T Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2022 %P 304-316 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a4/ %G ru %F SVMO_2022_24_3_a4
E. D. Tsapko. Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 3, pp. 304-316. http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a4/
[1] A. N. Tikhonov, “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Matematicheskii sbornik, 22(64):2 (1948), 193–204
[2] A. N. Tikhonov, “O sistemakh differentsialnykh uravnenii, soderzhaschikh parametry”, Matematicheskii sbornik, 27(69):1 (1950), 147–156
[3] A. N. Tikhonov, “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Matematicheskii sbornik, 31(73):3 (1952), 575–583
[4] V. F. Butuzov, Asimptoticheskie metody v singulyarno vozmuschennykh zadachakh, Izd-vo YarGU, Yaroslavl, 2014, 140 pp.
[5] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR
[6] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teopii singulyapnykh vozmuschenii, Vysshaya shkola, M., 1990, 208 pp. | MR
[7] A. B. Vasileva, A. A. Pochinka, Asimptoticheskaya teoriya singulyarno vozmuschennykh zadach, Fizicheskii fakultet MGU, M., 2008, 398 pp.
[8] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundamentalnaya i prikladnaya matematika, 4:3 (1998), 799–851 | MR
[9] V. F. Butuzov, A. B. Vasileva, N. N. Nefedov, “Asimptoticheskaya teoriya kontrastnykh struktur (obzor)”, Avtomatika i telemekhanika, 1997, no. 7, 4–32
[10] S. A. Lomov, I. S. Lomov, Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Moskov. un-ta, M., 2011, 456 pp.
[11] S. A. Lomov, Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981, 400 pp.
[12] V. I. Shalashilin, E. B. Kuznetsov, Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999, 224 pp. | MR
[13] E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “Parametrizatsiya zadachi Koshi dlya nelineinykh differentsialnykh uravnenii s kontrastnymi strukturami”, Vestnik Mordovskogo universiteta, 28:4 (2018), 486–510 | DOI
[14] E. B. Kuznetsov, S. S. Leonov, D. A. Tarkhov, E. D. Tsapko, A. A. Babintseva, “Chislennye metody resheniya zadach s kontrastnymi strukturami”, Sovremennye informatsionnye tekhnologii i IT-obrazovanie, 14:3 (2018), 539–547 | DOI
[15] E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “A new numerical approach for solving initial value problems with exponential growth integral curves”, IOP Conference Series: Materials Science and Engineering, 927:1 (2020), 012032 | DOI
[16] K. Chang, F. Khaues, Nelineinye singulyarno vozmuschennye kraevye zadachi. Teoriya i prilozheniya, Mir, M., 1988, 247 pp.
[17] E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “Applying the Best Parameterization Method and Its Modifications for Numerical Solving of Some Classes of Singularly Perturbed Problems”, Advances in Theory and Practice of Computational Mechanics, 274:1 (2022), 311–330, Springer, Singapore | DOI
[18] V. F. Formalev, D. L. Reviznikov, Chislennye metody, Fizmatlit, M., 2004, 400 pp.
[19] N. N. Kalitkin, Chislennye metody, BKhV-Peterburg, SPb., 2011, 592 pp.
[20] A. A. Belov, N. N. Kalitkin, “Osobennosti rascheta kontrastnykh struktur v zadachakh Koshi”, Matem. modelirovanie, 28:10 (2016), 97–109