Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 3, pp. 304-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

When solving problems of aerodynamics, researchers often need to numerically solve singularly perturbed boundary value problems. In some cases, the problem can be reduced to solving a boundary value problem for an ordinary differential equation. Then it is possible to apply various numerical methods such as the grid method, the shooting method, as well as a number of projection methods, which, in turn, can form the basis of the finite element method. The grid method requires solving a system of algebraic equations, that are often nonlinear, which leads to an increase in the calculation time and to the difficulties in convergence of the approximate solution. According to the shooting method, the solution of boundary value problem is reduced to solving a certain set of Cauchy problems. When solving stiff Cauchy problems, implicit schemes are used as a rule, but in this case the same difficulties arise as for the grid method. The transformation of the problem to the best argument $\lambda$, calculated tangentially along the integral curve, makes it possible to increase the efficiency of explicit numerical methods. However, in cases where the growth rate of integral curves is close to exponential, the transformation to the best argument is not efficient enough. Then the best argument is modified in such a way as to smooth out this flaw. This paper investigates the application of modified best argument to the solution of the boundary value problem of an aerodynamic flow movement in case when the gas is injected at supersonic speed into a channel of variable cross-section.
Keywords: singularly perturbed problem, ordinary differential equation, boundary value problem, method of solution continuation, best argument, modified best argument, supersonic flow.
@article{SVMO_2022_24_3_a4,
     author = {E. D. Tsapko},
     title = {Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {304--316},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a4/}
}
TY  - JOUR
AU  - E. D. Tsapko
TI  - Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 304
EP  - 316
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a4/
LA  - ru
ID  - SVMO_2022_24_3_a4
ER  - 
%0 Journal Article
%A E. D. Tsapko
%T Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 304-316
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a4/
%G ru
%F SVMO_2022_24_3_a4
E. D. Tsapko. Numerical solution of a singularly perturbed boundary value problem of supersonic flow transformed to the modified best argument. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 3, pp. 304-316. http://geodesic.mathdoc.fr/item/SVMO_2022_24_3_a4/

[1] A. N. Tikhonov, “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Matematicheskii sbornik, 22(64):2 (1948), 193–204

[2] A. N. Tikhonov, “O sistemakh differentsialnykh uravnenii, soderzhaschikh parametry”, Matematicheskii sbornik, 27(69):1 (1950), 147–156

[3] A. N. Tikhonov, “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Matematicheskii sbornik, 31(73):3 (1952), 575–583

[4] V. F. Butuzov, Asimptoticheskie metody v singulyarno vozmuschennykh zadachakh, Izd-vo YarGU, Yaroslavl, 2014, 140 pp.

[5] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR

[6] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teopii singulyapnykh vozmuschenii, Vysshaya shkola, M., 1990, 208 pp. | MR

[7] A. B. Vasileva, A. A. Pochinka, Asimptoticheskaya teoriya singulyarno vozmuschennykh zadach, Fizicheskii fakultet MGU, M., 2008, 398 pp.

[8] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundamentalnaya i prikladnaya matematika, 4:3 (1998), 799–851 | MR

[9] V. F. Butuzov, A. B. Vasileva, N. N. Nefedov, “Asimptoticheskaya teoriya kontrastnykh struktur (obzor)”, Avtomatika i telemekhanika, 1997, no. 7, 4–32

[10] S. A. Lomov, I. S. Lomov, Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Moskov. un-ta, M., 2011, 456 pp.

[11] S. A. Lomov, Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981, 400 pp.

[12] V. I. Shalashilin, E. B. Kuznetsov, Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999, 224 pp. | MR

[13] E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “Parametrizatsiya zadachi Koshi dlya nelineinykh differentsialnykh uravnenii s kontrastnymi strukturami”, Vestnik Mordovskogo universiteta, 28:4 (2018), 486–510 | DOI

[14] E. B. Kuznetsov, S. S. Leonov, D. A. Tarkhov, E. D. Tsapko, A. A. Babintseva, “Chislennye metody resheniya zadach s kontrastnymi strukturami”, Sovremennye informatsionnye tekhnologii i IT-obrazovanie, 14:3 (2018), 539–547 | DOI

[15] E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “A new numerical approach for solving initial value problems with exponential growth integral curves”, IOP Conference Series: Materials Science and Engineering, 927:1 (2020), 012032 | DOI

[16] K. Chang, F. Khaues, Nelineinye singulyarno vozmuschennye kraevye zadachi. Teoriya i prilozheniya, Mir, M., 1988, 247 pp.

[17] E. B. Kuznetsov, S. S. Leonov, E. D. Tsapko, “Applying the Best Parameterization Method and Its Modifications for Numerical Solving of Some Classes of Singularly Perturbed Problems”, Advances in Theory and Practice of Computational Mechanics, 274:1 (2022), 311–330, Springer, Singapore | DOI

[18] V. F. Formalev, D. L. Reviznikov, Chislennye metody, Fizmatlit, M., 2004, 400 pp.

[19] N. N. Kalitkin, Chislennye metody, BKhV-Peterburg, SPb., 2011, 592 pp.

[20] A. A. Belov, N. N. Kalitkin, “Osobennosti rascheta kontrastnykh struktur v zadachakh Koshi”, Matem. modelirovanie, 28:10 (2016), 97–109