On the numerical solution of second-order stiff linear differential-algebraic equations
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 151-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article addresses systems of linear ordinary differential equations with an identically degenerate matrix in the main part. Such formulations of problems in literature are usually called differential-algebraic equations. In this work, attention is paid to the problems of the second order. Basing on the theory of matrix pencils and polynomials, sufficient conditions for existence and uniqueness of the equations’ solution are given. To solve them numerically, authors investigate a multistep method and its version based on a reformulated notation of the original problem. This representation makes it possible to construct methods whose coefficient matrices can be calculated at previous points. This approach has delivered good results in numerical solution of first-order differential-algebraic equations that contain stiff and rapidly oscillating components and have singular matrix pencil. The stability of proposed numerical algorithm is investigated for the well-known test equation. It is shown that this difference scheme has the first order of convergence. Numerical calculations of the model problem are presented.
Keywords: differential algebraic equations of the second order, stiff systems, difference schemes.
@article{SVMO_2022_24_2_a2,
     author = {L. S. Solovarova and T. Phuong},
     title = {On the numerical solution of second-order stiff linear differential-algebraic equations},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {151--161},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a2/}
}
TY  - JOUR
AU  - L. S. Solovarova
AU  - T. Phuong
TI  - On the numerical solution of second-order stiff linear differential-algebraic equations
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 151
EP  - 161
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a2/
LA  - ru
ID  - SVMO_2022_24_2_a2
ER  - 
%0 Journal Article
%A L. S. Solovarova
%A T. Phuong
%T On the numerical solution of second-order stiff linear differential-algebraic equations
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 151-161
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a2/
%G ru
%F SVMO_2022_24_2_a2
L. S. Solovarova; T. Phuong. On the numerical solution of second-order stiff linear differential-algebraic equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 2, pp. 151-161. http://geodesic.mathdoc.fr/item/SVMO_2022_24_2_a2/

[1] Yu. E. Boyarintsev, Regular and singular systems of ordinary differential equations, Nauka Publ., Novosibirsk, 1980, 222 pp. (In Russ.) | MR | MR | Zbl

[2] K. F. Brenan, S. L. Campbell, L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, SIAM, Philadelphia, 1996, 270 pp. | MR | Zbl

[3] E. Hairer, G. Wanner, Solving ordinary differential equations II: stiff and differential-algebraic problems, Springer-Verlag, Berlin, 1996, 614 pp. | MR

[4] R. Lamour, R. März , C. Tischendorf, Differential-algebraic equations: A projector based analysis, Springer-Verlag, Berlin-Heidelberg, 2013, 649 pp. | DOI | MR | Zbl

[5] M. N. Afanaseva, E. B. Kuznetsov, “The method of continuous continuation by a parameter for solving boundary-value problems for nonlinear systems of differential-algebraic equations with delay that have singular points”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 192 (2021), 38–45 (In Russ.) | DOI

[6] V. F. Chistyakov, Algebraic differential operators with a finite-dimensional kernel, Nauka Publ., Novosibirsk, 1996, 280 pp. (In Russ.) | MR

[7] V. F. Chistyakov, “Preservation of stability type of difference schemes when solving stiff differential algebraic equations”, Numer. Analys. Appl., 4 (2011), 363–375 | DOI | Zbl

[8] J. Sand, “On implicit Euler and related methods for high-order high-index DAEes”, Applied Numerical Mathematics, 42 (2002), 411–424 | DOI | MR | Zbl

[9] V. Mehrmann, C. Shi, “Transformation of high order linear differential-algebraic systems to first order”, Numerical Algorithms, 42 (2006), 281–307 | DOI | MR | Zbl

[10] M. V. Bulatov, Ming-Gong Lee, L. S. Solovarova, “On first- and second-order difference schemes for differential-algebraic equations of index at most two”, Comput. Math. and Math. Phys., 50 (2010), 1808–1817 | DOI | MR | Zbl

[11] F. Gantmacher, The theory of matrices, Chelsea Publishing Company, New York, 1959, 337 pp. | MR | MR

[12] Yu. E. Boyarintsev, I. V. Orlova, Pencil matrix and algebraic-differential systems, Nauka Publ., Novosibirsk, 2006, 124 pp.

[13] M. V. Bulatov, M.-G. Lee, “Applications of matrix polynomials to the analysis of linear differential-algegraic equations of higher order”, Differential Equations, 44 (2008), 1353–1360 | DOI | MR | Zbl

[14] V. F. Chistyakov, On the extension of linear systems that are not resolved with respect to derivatives, IRC SB AS USSR, Irkutsk, 1986, 25 pp. (In Russ.)

[15] R. Marz, “Differential-algebraic systems anew”, Appl. Numer. Math., 42 (2002), 315–335 | DOI | MR | Zbl

[16] P. Kunkel, V. Mehrmann, “Stability properties of differential-algebraic equations and spin-stabilized diskretizations”, Electr. Trans. Numer. Analys., 26 (2007), 385–420 | MR | Zbl

[17] E. Hairer, G. Wanner, S. P. Norsett, Solving ordinary differential equations I: Nonstiff problems, Springer-Verlag, Berlin, 1987, 539 pp. | MR | MR | Zbl