Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_1_a5, author = {A. A. Kosov and \`E. I. Semenov}, title = {On the {Movement} of {Gyrostat} under the {Action} of {Potential} and {Gyroscopic} {Forces}}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {66--75}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a5/} }
TY - JOUR AU - A. A. Kosov AU - È. I. Semenov TI - On the Movement of Gyrostat under the Action of Potential and Gyroscopic Forces JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 66 EP - 75 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a5/ LA - ru ID - SVMO_2022_24_1_a5 ER -
%0 Journal Article %A A. A. Kosov %A È. I. Semenov %T On the Movement of Gyrostat under the Action of Potential and Gyroscopic Forces %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2022 %P 66-75 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a5/ %G ru %F SVMO_2022_24_1_a5
A. A. Kosov; È. I. Semenov. On the Movement of Gyrostat under the Action of Potential and Gyroscopic Forces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 66-75. http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a5/
[1] V. V. Golubev, Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point, Israeli Program for Scientific Translations, Israeli, 1960, 287 pp. | MR | Zbl
[2] I. N. Gashenenko, G. V. Gorr, A. M. Kovalev, Classical problems in the dynamics of rigid body, Naukova Dumka Publ., Kiev, 2012, 441 pp. | MR
[3] V. I. Zubov, Analytical dynamics of the system of bodies, LSU publishing house, Leningrad, 1983, 344 pp.
[4] S. Nikolov S., N Nedkova, “Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review”, Journal of Applied and Computational Mechanics, 1:4 (2015), 187–206
[5] A. V. Belyaev, “On the general solution of the problem of the motion of a heavy rigid body in the Hess case”, Sbornik: Mathematics, 206:5 (2015), 621-649 | MR | Zbl
[6] M. Romano, “Exact analytic solution for the rotation of a rigid body having spherical ellipsoid of inertia and subjected to a constant torque”, Celestial Mech. Dyn. Astr., 100:3 (2008), 181–189 | MR | Zbl
[7] G. V. Gorr, A. V. Maznev, “On solutions of the equations of motion of a rigid body in the potential force field in the case of constant modulus of the kinetic moment”, Rigid Body Mechanics, 47 (2017), 12–24 | MR
[8] G. V. Gorr, A. V. Maznev, “Precession and isoconic motions of a rigid body under the potential and gyroscopic forces”, Rigid Body Mechanics, 45 (2015), 26–39 | MR
[9] H. M. Yehia, A. A. Elmandouh, “Regular Precession of a Rigid Body (Gyrostat) Acted upon by an Irreducible Combination of Three Classical Fields”, Journal of Physics A. Mathematical and Theoretical, 46:14 (2013), 142001 | MR | Zbl
[10] H. M. Yehia, A. A. Elmandouh, “A new conditional integrable case in the dynamics of a rigid body-gyrostat”, Mech. Res. Commun, 78 (2016), 25–27 | MR
[11] A. A. Kosov, E. I. Semenov, “On first integrals and stability of stationary motions of gyrostat”, Physica D: Nonlinear Phenomena, 430 (2022), 133103 | MR | Zbl
[12] V. I. Zubov, Problem of stability of control processes, Publishing house Sudostroenie, Leningrad, 1980, 253 pp. | MR