Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_1_a4, author = {S. Kh. Zinina and P. I. Pochinka}, title = {Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {54--65}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a4/} }
TY - JOUR AU - S. Kh. Zinina AU - P. I. Pochinka TI - Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 54 EP - 65 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a4/ LA - ru ID - SVMO_2022_24_1_a4 ER -
%0 Journal Article %A S. Kh. Zinina %A P. I. Pochinka %T Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2022 %P 54-65 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a4/ %G ru %F SVMO_2022_24_1_a4
S. Kh. Zinina; P. I. Pochinka. Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 54-65. http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a4/
[1] A. A. Andronov, L. S. Pontryagin, “Rough systems”, Reports of the Academy of Sciences of the USSR, 14:5 (1937), 247–250 (In Russ.)
[2] A. G. Maier, “A rough transformation of a circle into a circle”, Uch. Zap. Gorkovskogo Univ., 12 (1939), 215–229 (In Russ.)
[3] E. Ya. Gurevich, S. Kh. Zinina, “On topological classification of gradient-like systems on surfaces, that are locally direct product”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 17:1 (2015), 37–47 (In Russ.) | Zbl
[4] I. V. Golikova, S. Kh. Zinina, “Topological conjugacy of $n$-multiple Cartesian products of circle rough transformations”, Izvestiya Vysshikh Uchebnykh Zavedenii. Applied Nonlinear Dynamics, 29:6 (2021), 851–862 (In Russ.) | DOI
[5] M. M. Peixoto, “On structural stability”, Ann. Math., 69 (1959), 199–222 | MR | Zbl
[6] R. Mane, “A proof of $C^1$ stability conjecture”, Publ. Math. IHES, 66 (1988), 161–210 | MR | Zbl
[7] C. Robinson, “Structural stability of $C^1$ diffeomorphisms”, J. Diff. Equat., 22:1 (1976), 28–73 | MR | Zbl
[8] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | MR | Zbl
[9] J. Palis, “On Morse-Smale dynamical systems”, Topology, 8:5 (1969), 385–404 | MR
[10] J. Palis, S. Smale, “Structural stability theorems”, Global Analysis, Proc. Sympos. Pure Math., 14 (1970), 223–231 | MR | Zbl
[11] J. Palis, W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York, Heidelberg, Berlin, 1982, 198 pp. | MR | Zbl
[12] V. Grines, T. Medvedev, O. Pochinka, Dynamical systems on 2- and 3-manifolds., Springer, Switzerland, 2016, 313 pp. | MR | Zbl
[13] A. I. Morozov, O. V. Pochinka, “Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 22:1 (2020), 71–80 (In Russ.) | DOI
[14] D. D. Shubin, “Topology of ambient manifolds of non-singular Morse – Smale flows with three periodic orbits”, Izvestiya Vysshikh Uchebnykh Zavedenii. Applied Nonlinear Dynamics, 29:6 (2021), 863–868 (In Russ.) | DOI
[15] I. V. Golikova, O. V. Pochinka, “Nadstroiki nad grubymi preobrazovaniyami okruzhnosti”, Ogarev-Online, 2020, no. 13, 1-11 (In Russ.) http://journal.mrsu.ru/arts/nadstrojki-nad-grubymi-preobrazovaniyami-okruzhnosti
[16] A. E. Kolobyanina, E. V. Nozdrinova, O. V. Pochinka, “Classification of rough transformations of a circle from a modern point of view”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:4 (2018), 408–418 (In Russ.) | DOI
[17] A. Hatcher, Notes on basic 3-manifold topology, 2007, 60 pp. https://pi.math.cornell.edu/hatcher/3M/3M.pdf | MR