Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 54-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper introduces class $G$ containing Cartesian products of orientation-changing rough transformations of the circle and studies their dynamics. As it is known from the paper of A.G. Maier non-wandering set of orientation-changing diffeomorphism of the circle consists of $2q$ periodic points, where $q$ is some natural number. So Cartesian products of two such diffeomorphisms has $4q_1q_2$ periodic points where $q_1$ corresponds to the first transformation and $q_2$ corresponds to the second one. The authors describe all possible types of the set of periodic points, which contains $2q_1q_2$ saddle points, $q_1q_2$ sinks, and $q_1q_2$ sources; $4$ points from mentioned $4q_1q_2$ periodic ones are fixed, and the remaining $4q_1q_2-4$ points have period $2$. In the theory of smooth dynamical systems, a very useful result is that, given a diffeomorphism $f$ of a manifold, one can construct a flow on a manifold with dimension one greater; this flow is called the suspension over $f$. The authors introduce the concept of suspension over diffeomorphisms of class $G$, describe all possible types of suspension orbits and the number of these orbits. Besides that, the authors prove a theorem on the topology of the manifold on which the suspension is given. Namely, the carrier manifold of the flows under consideration is homeomorphic to the closed 3-manifold $\mathbb T^2 \times [0,1]/\varphi$, where $\varphi :\mathbb T^ 2 \to \mathbb T^2$. The main result of the paper says that suspensions over diffeomorphisms of the class $G$ are topologically equivalent if and only if corresponding diffeomorphisms are topologically conjugate. The idea of the proof is to show that the topological equivalence of the suspensions $\phi^t$ and $\phi'^t$ implies the topological conjugacy of $\phi$ and $\phi'$.
Keywords: rough systems of differential equations, rough circle transformations, orientation-reversing circle transformations, Cartesian product of circle transformations, suspension over a diffeomorphism.
@article{SVMO_2022_24_1_a4,
     author = {S. Kh. Zinina and P. I. Pochinka},
     title = {Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {54--65},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a4/}
}
TY  - JOUR
AU  - S. Kh. Zinina
AU  - P. I. Pochinka
TI  - Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 54
EP  - 65
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a4/
LA  - ru
ID  - SVMO_2022_24_1_a4
ER  - 
%0 Journal Article
%A S. Kh. Zinina
%A P. I. Pochinka
%T Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 54-65
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a4/
%G ru
%F SVMO_2022_24_1_a4
S. Kh. Zinina; P. I. Pochinka. Classification of suspensions over cartesian products of~orientation-reversing diffeomorphisms of a circle. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 54-65. http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a4/

[1] A. A. Andronov, L. S. Pontryagin, “Rough systems”, Reports of the Academy of Sciences of the USSR, 14:5 (1937), 247–250 (In Russ.)

[2] A. G. Maier, “A rough transformation of a circle into a circle”, Uch. Zap. Gorkovskogo Univ., 12 (1939), 215–229 (In Russ.)

[3] E. Ya. Gurevich, S. Kh. Zinina, “On topological classification of gradient-like systems on surfaces, that are locally direct product”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 17:1 (2015), 37–47 (In Russ.) | Zbl

[4] I. V. Golikova, S. Kh. Zinina, “Topological conjugacy of $n$-multiple Cartesian products of circle rough transformations”, Izvestiya Vysshikh Uchebnykh Zavedenii. Applied Nonlinear Dynamics, 29:6 (2021), 851–862 (In Russ.) | DOI

[5] M. M. Peixoto, “On structural stability”, Ann. Math., 69 (1959), 199–222 | MR | Zbl

[6] R. Mane, “A proof of $C^1$ stability conjecture”, Publ. Math. IHES, 66 (1988), 161–210 | MR | Zbl

[7] C. Robinson, “Structural stability of $C^1$ diffeomorphisms”, J. Diff. Equat., 22:1 (1976), 28–73 | MR | Zbl

[8] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | MR | Zbl

[9] J. Palis, “On Morse-Smale dynamical systems”, Topology, 8:5 (1969), 385–404 | MR

[10] J. Palis, S. Smale, “Structural stability theorems”, Global Analysis, Proc. Sympos. Pure Math., 14 (1970), 223–231 | MR | Zbl

[11] J. Palis, W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York, Heidelberg, Berlin, 1982, 198 pp. | MR | Zbl

[12] V. Grines, T. Medvedev, O. Pochinka, Dynamical systems on 2- and 3-manifolds., Springer, Switzerland, 2016, 313 pp. | MR | Zbl

[13] A. I. Morozov, O. V. Pochinka, “Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 22:1 (2020), 71–80 (In Russ.) | DOI

[14] D. D. Shubin, “Topology of ambient manifolds of non-singular Morse – Smale flows with three periodic orbits”, Izvestiya Vysshikh Uchebnykh Zavedenii. Applied Nonlinear Dynamics, 29:6 (2021), 863–868 (In Russ.) | DOI

[15] I. V. Golikova, O. V. Pochinka, “Nadstroiki nad grubymi preobrazovaniyami okruzhnosti”, Ogarev-Online, 2020, no. 13, 1-11 (In Russ.) http://journal.mrsu.ru/arts/nadstrojki-nad-grubymi-preobrazovaniyami-okruzhnosti

[16] A. E. Kolobyanina, E. V. Nozdrinova, O. V. Pochinka, “Classification of rough transformations of a circle from a modern point of view”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:4 (2018), 408–418 (In Russ.) | DOI

[17] A. Hatcher, Notes on basic 3-manifold topology, 2007, 60 pp. https://pi.math.cornell.edu/hatcher/3M/3M.pdf | MR