Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_1_a3, author = {A. L. Dobrolyubova and V. E. Kruglov}, title = {Topological conjugacy of non-singular flows with two limit cycles on $S^2 \times S^1$}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {40--53}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a3/} }
TY - JOUR AU - A. L. Dobrolyubova AU - V. E. Kruglov TI - Topological conjugacy of non-singular flows with two limit cycles on $S^2 \times S^1$ JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 40 EP - 53 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a3/ LA - ru ID - SVMO_2022_24_1_a3 ER -
%0 Journal Article %A A. L. Dobrolyubova %A V. E. Kruglov %T Topological conjugacy of non-singular flows with two limit cycles on $S^2 \times S^1$ %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2022 %P 40-53 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a3/ %G ru %F SVMO_2022_24_1_a3
A. L. Dobrolyubova; V. E. Kruglov. Topological conjugacy of non-singular flows with two limit cycles on $S^2 \times S^1$. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 40-53. http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a3/
[1] A. A. Andronov, L. S. Pontryagin, “Rough systems”, Doklady Akademii Nauk SSSR, 14:5 (1937), 247–250
[2] S. Smale, “Differentiable dynamical systems”, Uspekhi Mat. Nauk., 25:1 (1970), 113–185 | MR
[3] E. A. Leontovich, A. G. Mayer, “About trajectories determining qualitative structure of sphere partition into trajectories”, Doklady Akademii nauk SSSR, 14:5 (1937), 251–257
[4] E. A. Leontovich, A. G. Mayer, “On a scheme determining the topological structure of the separation of trajectories”, Doklady Akademii nauk SSSR, 103:4 (1955), 557–560 | Zbl
[5] M. Peixoto, “On the classification of flows on two manifolds”, Dynamical systems Proc., 1971, 389–419 | MR
[6] A. A. Oshemkov, V. V. Sharko, “Classification of Morse–Smale flows on two-dimensional manifolds”, Matematicheskiy sbornik, 189:8 (1998), 93–140 | Zbl
[7] S. Yu. Pilyugin, “Phase diagrams that determine Morse–Smale systems without periodic trajectories on spheres”, Differential Equations, 14:2 (1978), 245–254
[8] A. O. Prishlyak, “Morse–Smale vector fields without closed trajectories on three-dimensional manifolds”, Mathematical Notes, 71:2 (2002), 254–260 | Zbl
[9] O. V. Pochinka, D. D. Shubin, “Vector Morse-Smale fields without closed trajectories on 3-dimensional manifolds”, Nonlinearity | MR
[10] V. Kruglov, D. Malyshev, O. Pochinka, D. Shubin, “On topological classification of gradient-like flows on an n-sphere in the sense of topological conjugacy”, Regular and Chaotic Dynamics, 25:6 (2020), 716–728 | MR | Zbl
[11] V. E. Kruglov, O. V. Pochinka, “Classification of the Morse - Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy”, Izvestiya vuzov. Prikladnaya nelineynaya dinamika, 29:6 (2021), 835–850
[12] A. E. Kolobyanina, V. E. Kruglov, “Morse-Bott energy function for surface $\Omega$-stable flows”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 22:4 (2020), 434–441 | DOI
[13] K. R. Meyer, “Energy functions for Morse-Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | MR | Zbl
[14] J. A. Palis, “A differentiable invariant of topological conjugacy and moduli of stability”, Asterisque, 51 (1978), 335–346 | MR | Zbl
[15] M. C. Irwin, “A classification of elementary cycles”, Topology, 9:1 (1970), 35–47 | MR | Zbl