On a topological classification of multidimensional polar flows
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work solves the classification problem for structurally stable flows, which goes back to the classical works of Andronov, Pontryagin, Leontovich and Mayer. One of important examples of such flows is so-called Morse-Smale flow, whose non-wandering set consists of a finite number of fixed points and periodic trajectories. To date, there are exhaustive classification results for Morse-Smale flows given on manifolds whose dimension does not exceed three, and a very small number of results for higher dimensions. This is explained by increasing complexity of the topological problems that arise while describing the structure of the partition of a multidimensional phase space into trajectories. In this paper authors investigate the class $G(M^n)$ of Morse-Smale flows on a closed connected orientable manifold $M^n$ whose non-wandering set consists of exactly four points: a source, a sink, and two saddles. For the case when the dimension $n$ of the supporting manifold is greater or equal than four, it is additionally assumed that one of the invariant manifolds for each saddle equilibrium state is one-dimensional. For flows from this class, authors describe the topology of the supporting manifold, estimate minimum number of heteroclinic curves, and obtain necessary and sufficient conditions of topological equivalence. Authors also describe an algorithm that constructs standard representative in each class of topological equivalence. One of the surprising results of this paper is that while for $n=3$ there is a countable set of manifolds that admit flows from class $G(M^3)$, there is only one supporting manifold (up to homeomorphism) for dimension $n>3$.
Keywords: Morse-Smale flows, polar flow, topological classification, topology of ambient manifold, heteroclinic curve.
@article{SVMO_2022_24_1_a2,
     author = {E. Ya. Gurevich and N. S. Denisova},
     title = {On a topological classification of multidimensional polar flows},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a2/}
}
TY  - JOUR
AU  - E. Ya. Gurevich
AU  - N. S. Denisova
TI  - On a topological classification of multidimensional polar flows
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 31
EP  - 39
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a2/
LA  - ru
ID  - SVMO_2022_24_1_a2
ER  - 
%0 Journal Article
%A E. Ya. Gurevich
%A N. S. Denisova
%T On a topological classification of multidimensional polar flows
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 31-39
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a2/
%G ru
%F SVMO_2022_24_1_a2
E. Ya. Gurevich; N. S. Denisova. On a topological classification of multidimensional polar flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a2/

[1] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Proceedings Symposium Dynamical Systems, 1973, 389–419 | MR | Zbl

[2] G. Fleitas, “Classification of gradient-like flows in dimension two and three”, Bol. Soc. Mat. Brasil, 1975, no. 6, 155–183 | MR | Zbl

[3] Ya. L. Umansky, “Necessary and sufficient conditions for topological equivalence of three-dimensional dynamical Morse-Smale systems with a finite number of singular trajectories”, Math. Col., 181:2 (1990), 212–239 (In Russ.)

[4] S. Smale, “Morse inequalities for a dynamical systems”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | MR | Zbl

[5] V. Z. Grines, “Topological classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic trajectories on surfaces”, Math. notes, 54:3 (1993), 3–17 (In Russ.) | MR | Zbl

[6] A. I. Morozov, O. V. Pochinka, “Combinatorial invariant for Morse-Smale surface diffeomorphisms with orientable heteroclinic”, Journal of the Middle Volga Mathematical Society, 22:1 (2020), 71–80 (In Russ.)

[7] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | Zbl

[8] K. R. Meyer, “Energy Functions for Morse–Smale Systems”, Amer. J. Math., 90:4 (1968), 1031–1040 | MR | Zbl

[9] Y. Matsumoto, An introduction to Morse theory, Oxford University Press, 2001, 9 pp. | MR

[10] D. Rolfsen, Knots and links, AMS Chelsea Publishing, 2003, 439 pp. | MR

[11] N. L. Max, com. by S. Smale, “Homeomorphism of $S^n\times S^1$”, Bulletin of the American Mathematical Society, 73:6 (1967), 939–942 | MR | Zbl