Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2022_24_1_a2, author = {E. Ya. Gurevich and N. S. Denisova}, title = {On a topological classification of multidimensional polar flows}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {31--39}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a2/} }
TY - JOUR AU - E. Ya. Gurevich AU - N. S. Denisova TI - On a topological classification of multidimensional polar flows JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2022 SP - 31 EP - 39 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a2/ LA - ru ID - SVMO_2022_24_1_a2 ER -
E. Ya. Gurevich; N. S. Denisova. On a topological classification of multidimensional polar flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a2/
[1] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Proceedings Symposium Dynamical Systems, 1973, 389–419 | MR | Zbl
[2] G. Fleitas, “Classification of gradient-like flows in dimension two and three”, Bol. Soc. Mat. Brasil, 1975, no. 6, 155–183 | MR | Zbl
[3] Ya. L. Umansky, “Necessary and sufficient conditions for topological equivalence of three-dimensional dynamical Morse-Smale systems with a finite number of singular trajectories”, Math. Col., 181:2 (1990), 212–239 (In Russ.)
[4] S. Smale, “Morse inequalities for a dynamical systems”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | MR | Zbl
[5] V. Z. Grines, “Topological classification of Morse-Smale diffeomorphisms with a finite set of heteroclinic trajectories on surfaces”, Math. notes, 54:3 (1993), 3–17 (In Russ.) | MR | Zbl
[6] A. I. Morozov, O. V. Pochinka, “Combinatorial invariant for Morse-Smale surface diffeomorphisms with orientable heteroclinic”, Journal of the Middle Volga Mathematical Society, 22:1 (2020), 71–80 (In Russ.)
[7] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | Zbl
[8] K. R. Meyer, “Energy Functions for Morse–Smale Systems”, Amer. J. Math., 90:4 (1968), 1031–1040 | MR | Zbl
[9] Y. Matsumoto, An introduction to Morse theory, Oxford University Press, 2001, 9 pp. | MR
[10] D. Rolfsen, Knots and links, AMS Chelsea Publishing, 2003, 439 pp. | MR
[11] N. L. Max, com. by S. Smale, “Homeomorphism of $S^n\times S^1$”, Bulletin of the American Mathematical Society, 73:6 (1967), 939–942 | MR | Zbl