Uniqueness of the solution of one class of Volterra-Stieltjes linear integral equations of the third kind
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the question of uniqueness of the solution for one class of Volterra-Stieltjes linear integral equations of the third kind is investigated. The notion of derivative with respect to an increasing function was introduced by A. Asanov in 2001 and plays special role in the study. This notion is a generalization of the usual concept of a derivative function and is an inverse operator for one class of the Stieltjes integral. Basing on idea of such derivative, using the method of integral transformations and the method of non-negative quadratic forms, the uniqueness theorems for the solution of the considered class of integral equations are proved. Examples satisfying the conditions of uniqueness theorems are also constructed in the paper. It becomes clear from these examples that it is difficult to study Volterra-Stieltjes linear integral equations of the first and third kind without using the notion of derivative with respect to increasing function.
Mots-clés : Volterra-Stieltjes integral equations
Keywords: third kind, derivative with respect to an increasing function, uniqueness of solution.
@article{SVMO_2022_24_1_a0,
     author = {A. Asanov and K. Matanova and E. Absamat kyzy},
     title = {Uniqueness of the solution of one class of {Volterra-Stieltjes} linear integral equations of the third kind},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a0/}
}
TY  - JOUR
AU  - A. Asanov
AU  - K. Matanova
AU  - E. Absamat kyzy
TI  - Uniqueness of the solution of one class of Volterra-Stieltjes linear integral equations of the third kind
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2022
SP  - 11
EP  - 20
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a0/
LA  - ru
ID  - SVMO_2022_24_1_a0
ER  - 
%0 Journal Article
%A A. Asanov
%A K. Matanova
%A E. Absamat kyzy
%T Uniqueness of the solution of one class of Volterra-Stieltjes linear integral equations of the third kind
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2022
%P 11-20
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a0/
%G ru
%F SVMO_2022_24_1_a0
A. Asanov; K. Matanova; E. Absamat kyzy. Uniqueness of the solution of one class of Volterra-Stieltjes linear integral equations of the third kind. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 24 (2022) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/SVMO_2022_24_1_a0/

[1] Z. B. Tsalyuk, “Volterra integral equations”, J. Soviet Math., 12:6 (1979), 715–758 | DOI

[2] N. A. Magnitsky, “Linear Volterra integral equations of the first and third kinds”, Computational Mathematics and Mathematical Physics, 19:4 (1979), 182–200 | DOI | MR

[3] M. M. Lavrentyev, “Integral equations of the first kind”, Dokl. Akad. Nauk SSSR, 127:1 (1959), 31–33 (In Russ.)

[4] A. S. Apartsyn, Non-classical Volterra equations of the first kind: theory and numerical methods, Nauka, Novosibirsk, 1999, 1943 pp. (In Russ.)

[5] A. S. Apartsyn, I. V. Karaulova, E. V. Markova, V. V. Trufanov, “Application of Volterra integral equations for modeling strategies of power industry technical re-equipment”, Elektrichestvo, 2005, no. 10, 69–75 (In Russ.)

[6] A. S. Apartsyn, I. V. Sidler, “Study of test Volterra equations of the first kind in integral models of developing systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018), 24–33 (In Russ.) | DOI | MR

[7] V. M. Glushkov, V. V. Ivanov, V. M. Yanenko, Modeling of developing systems, Nauka, Moscow, 1983, 350 pp. (In Russ.)

[8] A. M. Denisov, “On the approximate solution of the Volterra equation of the first kind”, U.S.S.R. Comput. Math. Math. Phys., 15:4 (1975), 237–239 | DOI | MR

[9] M. I. Imanaliev, A. Asanov, “Solutions of system of nonlinear Volterra integral equations of the first kind”, Soviet Math. Dokl., 309:5 (1989), 1052–1055 (In Russ.) | MR

[10] M. I. Imanaliev, A. Asanov, “Regularization and uniqueness of solutions to systems of nonlinear Volterra integral equations of the third kind”, Doklady Math., 2007, no. 76, 490–493 | DOI | Zbl

[11] M. I. Imanaliev, A. Asanov, “Solutions to systems of linear Fredholm integral equations of the third kind”, Doklady Math., 2010, no. 81, 115–118 | DOI | MR | Zbl

[12] M. I. Imanaliev, A. Asanov, R. A. Asanov, “On a class of systems of linear and nonlinear Fredholm integral equations of the third kind with multipoint singularities”, Differential Equations, 2018, no. 54, 381–391 | DOI | Zbl

[13] A. Asanov, K. B. Matanova, R. A. Asanov, “A class of linear and nonlinear Fredholm integral equations of the third kind”, Kuwait J. Sci., 44:1 (2017), 17–28 | MR | Zbl

[14] P. K. Lamm, “A survey of regularization methods for first-kind Volterra equations”, Surveys on Solution Methods for Inverse Problems, 2000, 53–82 | DOI | MR | Zbl

[15] A. Asanov, “The derivative of a function by means of an increasing function.”, Manas Journal of Engineering, 1:1 (2001), 18–64 (In Russ.)

[16] A. Asanov, “Volterra-Stieltjes integral equations of the second kind and the first kind”, Manas Journal of Engineering, 1:2 (2002), 79–95 (In Russ.) | MR

[17] A. K. Toygonbaeva, A. Asanov, B. Kalimbetov, “On one class of Fredholm-Stiltjes linear integral equations of the first kind”, Bulletin of Karaganda University: Mathematics Series, 68:4 (2012), 3–6 (In Russ.)

[18] A. K. Toygonbaeva, A. Asanov, “On a class of systems of Fredholm-Stiltjes integral equations of the first kind with a discontinuous kernel”, Studies on Integro-Differential Equations, 2012, no. 45, 50–55 (In Russ.)

[19] A. K. Toygonbaeva, A. Asanov, “The choice of regularization parameter of solutions of linear Fredgolm-Stieltjes integral equations of the first kind”, New Technologies and Innovations of Kyrgyzstan, 2019, no. 6, 3–8 | MR