Investigation of dynamic processes in pressure measurement systems for gas-liquid media
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 461-471.

Voir la notice de l'article provenant de la source Math-Net.Ru

Initial-boundary value problems for systems of differential equations are considered, which are mathematical models of the mechanical system "pipeline - pressure sensor". In such a system, to mitigate the effects of vibration accelerations and high temperatures, the sensor is located at a certain distance from the engine and is connected to it via a pipeline. The "pipeline - pressure sensor" system is designed to measure pressure in gas-liquid media, for example, to control the pressure of the working medium in the combustion chambers of engines. On the basis of the proposed models, the joint dynamics of the sensitive element of the pressure sensor and the working medium in the pipeline is studied. To describe the motion of the working medium, linear models of fluid and gas mechanics are used, to describe the dynamics of a sensitive element, linear models of the mechanics of a deformable solid are applied. Analytical and numerical methods for solving initial-boundary value problems under study are presented. The numerical study of the initial-boundary value problem was carried out on the basis of the Galerkin method. In analytical study using the introduction of averaged characteristics, the solution of the original two-dimensional problem is reduced to the study of a one-dimensional model, whose further study made it possible to reduce the solution of the problem to the study of a differential equation with a deviating argument. Also, a numerical experiment is carried out and an example of calculating the deflection of the sensor’s moving element is presented.
Keywords: differential equations, aeroelasticity, elastic element, pressure sensor, dynamics, pipeline.
@article{SVMO_2021_23_4_a7,
     author = {J. {\CYRA}. Tamarova and P. A. Vel'misov and N. D. Aleksanin and N. I. Nurullin},
     title = {Investigation of dynamic processes in pressure measurement systems for gas-liquid media},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {461--471},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a7/}
}
TY  - JOUR
AU  - J. А. Tamarova
AU  - P. A. Vel'misov
AU  - N. D. Aleksanin
AU  - N. I. Nurullin
TI  - Investigation of dynamic processes in pressure measurement systems for gas-liquid media
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 461
EP  - 471
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a7/
LA  - ru
ID  - SVMO_2021_23_4_a7
ER  - 
%0 Journal Article
%A J. А. Tamarova
%A P. A. Vel'misov
%A N. D. Aleksanin
%A N. I. Nurullin
%T Investigation of dynamic processes in pressure measurement systems for gas-liquid media
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 461-471
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a7/
%G ru
%F SVMO_2021_23_4_a7
J. А. Tamarova; P. A. Vel'misov; N. D. Aleksanin; N. I. Nurullin. Investigation of dynamic processes in pressure measurement systems for gas-liquid media. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 461-471. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a7/

[1] L. G. Etkin, Vibration sensors. Theory and practice, Publishing House of Moscow State Technical University. N.E.Bauman, Moscow, 2004, 408 pp. (In Russ.)

[2] A. A Kazaryan, G. P Groshev, “Universal pressure sensor”, Measuring Equipment, 3 (2008), 26–30 (In Russ.)

[3] J. Ash et al, Sensors of measuring systems: in 2 books. Book 2., Mir Publ., Moscow, 1992 (In Russ.)

[4] D. I. Agejkin, E. N. Kostina, N. N. Kuznecova, Sensors of control and regulation, Mashinostroyeniye Publ., M., 1965, 928 pp. (In Russ.)

[5] V. P. Korsunov, Elastic sensitive elements, Publishing House of the Saratov University, Saratov, 1980, 264 pp. (In Russ.)

[6] L. E. Andreeva, Elastic elements of devices. 2nd ed., Mashinostroyeniye Publ., Moscow, 1981, 392 pp. (In Russ.)

[7] E. M. Belozubov, E. A. Mokrov, D. V. Tihomirov, “Minimizing the error of thin-film strain gauge pressure sensors when exposed to non-stationary temperature”, Sensors and systems, 1 (2004), 26–29 (In Russ.)

[8] E. A. Mokrov, D. V. Lebedev, V. P. Bazaev, E. V. Efremov, I. A. Semina, P. A. Kolchin, “On the design and technological improvement of strain gauge thin-film pressure sensors”, Sensors and Systems, 6 (2008), 2–7 (In Russ.)

[9] A. V. Ankilov, P. A. Velmisov, V. D. Gorbokonenko, Yu. V. Pokladova, Mathematical modeling of the mechanical system «pipeline – pressure sensor», UlGTU Publ., Ulyanovsk, 2008, 188 pp. (In Russ.)

[10] P. A. Velmisov, Yu. V. Pokladova, Study of the dynamics of deformable elements of some aerohydroelastic systems, UlGTU Publ., Ulyanovsk, 2018, 152 pp. (In Russ.)

[11] P. A. Velmisov, V. D. Gorbokonenko, Yu. A.Reshetnikov, “Mathematical model of the “pipeline - pressure sensor” system”, Mechanics and control processes: collection of scientific papers, 2002, 9–15

[12] P. A. Velmisov, V. D. Gorbokonenko, Yu. A. Reshetnikov, “Mathematical modeling of the mechanical system “pipeline – pressure sensor”, Sensors and Systems, 6:49 (2003), 12–15 (In Russ.)

[13] P. A. Velmisov, Yu. V. Pokladova, E. S. Serebryannikova, “Mathematical modeling of the system “pipeline - pressure sensor””, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 12:4 (2010), 85–93 (In Russ.)

[14] P. A. Velmisov, Yu. V. Pokladova, “Mathematical modelling of the “pipeline – pressure sensor” system”, Journal of Physics: Conference Series, 1353 (2019), 012085–1–6 | DOI

[15] P. A. Velmisov, Yu. V. Pokladova, U. J.Mizher, “Mathematical modelling of the mechanical system “pipeline – pressure sensor””, AIP Conference Proceedings, 2172 (2019), 030006 | DOI

[16] P. A. Velmisov, Yu. A. Tamarova, “Mathematical modeling of pressure measurement systems in gas-liquid media”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 22:3 (2020), 352–367 (In Russ.) | DOI