On modelling of thermodynamic interaction of particles suspended in two-dimensional medium
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 444-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical description of temperature distribution in a medium with foreign inclusions is difficult due to the complicated geometry of the problem, so asymptotic and numerical methods are usually used to model thermodynamic processes in heterogeneous media. To be convinced in convergence of these methods the authors consider model problem about two identical round particles in infinite planar medium with temperature gradient which is constant at infinity. Authors refine multipole expansion of the solution obtained earlier by continuing it up to higher powers of small parameter, that is nondimensional radius of thermodynamically interacting particles. Numerical approach to the problem using ANSYS software is described; in particular, appropriate choice of approximate boundary conditions is discussed. Authors ascertain that replacement of infinite medium by finite-sized domain is important source of error in FEM. To find domain boundaries in multiple inclusions' problem the authors develop "fictituous particle’’ method; according to it the cloud of particles far from the center of the cloud acts approximately as a single equivalent particle of greater size and so may be replaced by it. Basing on particular quantitative data the dependence of domain size that provides acceptable accuracy on thermal conductivities of medium and of particles is explored. Authors establish series of numerical experiments confirming convergence of multipole expansions method and FEM as well; proximity of their results is illustrated, too.
Keywords: thermodynamic interaction, disperse medium, heat equation, asymptotic expansion, finite element method.
Mots-clés : multipole
@article{SVMO_2021_23_4_a6,
     author = {A. O. Syromyasov and Yu. V. Ponkratova and T. V. Menshakova},
     title = {On modelling of thermodynamic interaction of particles suspended in two-dimensional medium},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {444--460},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a6/}
}
TY  - JOUR
AU  - A. O. Syromyasov
AU  - Yu. V. Ponkratova
AU  - T. V. Menshakova
TI  - On modelling of thermodynamic interaction of particles suspended in two-dimensional medium
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 444
EP  - 460
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a6/
LA  - ru
ID  - SVMO_2021_23_4_a6
ER  - 
%0 Journal Article
%A A. O. Syromyasov
%A Yu. V. Ponkratova
%A T. V. Menshakova
%T On modelling of thermodynamic interaction of particles suspended in two-dimensional medium
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 444-460
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a6/
%G ru
%F SVMO_2021_23_4_a6
A. O. Syromyasov; Yu. V. Ponkratova; T. V. Menshakova. On modelling of thermodynamic interaction of particles suspended in two-dimensional medium. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 444-460. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a6/

[1] V. L. Berdichevsky, Variational principles of continuum mechanics, Nauka, Moscow, 1983, 448 pp. (In Russ.)

[2] V. Yu. Alexandrov, “Drag of a strongly heated sphere at small Reynolds numbers”, Fluid Dynamics, 46:5 (2011), 142-156 | DOI | MR | Zbl

[3] J. C. Padrino, J. E. Sprittles, J. E. Lockerby, “Thermophoresis of a spherical particle: modelling through moment-based, macroscopic transport equations”, Journal of Fluid Mechanics, 862 (2019), 312–347 | DOI | MR | Zbl

[4] A. V. Glushak, N. V. Malay, N. N. Mironova, “Boundary value problem for the Navier–Stokes equations linearized in rate in the case of non-isothermal flow of heated gaseous medium spheroid”, Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012), 946–959 (In Russ.) | Zbl

[5] N. V. Malai, A. V. Glushak, E. R. Shchukin, “Solution of a Boundary Value Problem for Velocity-Linearized Navier–Stokes Equations in the Case of a Heated Spherical Solid Particle Settling in Fluid”, Computational Mathematics and Mathematical Physics, 58:7 (2018), 1132-1141 | DOI | MR

[6] G. K. Batchelor, J. T. Green, “The hydrodynamic interaction of two small freely-moving spheres in a linear flow field”, Journal of Fluid Mechanics, 56:2 (1972), 375–400 | DOI | Zbl

[7] G. K. Batchelor, J. T. Green, “The determination of the bulk stress in a suspension of spherical particles to order $c^{2}$”, Journal of Fluid Mechanics, 56:3 (1972), 401–427 | DOI | Zbl

[8] S. I. Martynov, “Hydrodynamic interaction of particles”, Fluid Dynamics, 33:2 (1998), 245–251 | DOI

[9] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Butterworth–Heinemann, 1987, 539 pp. | MR

[10] L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960, 417 pp. | MR | MR | Zbl

[11] J. Happel, H. Brenner, Low Reynolds number hydrodynamics, Springer Netherlands, 1983, xii, 553 pp.

[12] N. de Bruijn, Asymptotic methods in analysis, North-Holland, Amsterdam, 1958 | MR | Zbl

[13] L. J. Segerlind, Applied Finite Element Analysis, John Wiley and Sons, New York / London / Sydney / Toronto, 1976 | Zbl

[14] T. V. Menshakova, A. O. Syromyasov, “Thermodynamic interaction of two round particles on a plane”, Mathematical and Computer Modelling of Natural Science and Social Problems (MCM-2019), Proc. XIII Int. Scientific-Technical Conference of young scientists, PhD students and students (Penza, 3–6 June, 2019), 167–171

[15] A. O. Syromyasov, “Thermodynamic interaction of spherical particles in a medium with constant temperature gradient”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4, 1158–1160 (In Russ.)

[16] L. N. Tretyak, Processing of observation results, Orenburg State University, 2004, 171 pp. (in Russ.)