Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_4_a5, author = {A. A. Lytaev and I. Yu. Popov}, title = {Simulation of switchers for {CNOT-gates} based on optical waveguide interaction with coupled mode theory}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {433--443}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a5/} }
TY - JOUR AU - A. A. Lytaev AU - I. Yu. Popov TI - Simulation of switchers for CNOT-gates based on optical waveguide interaction with coupled mode theory JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 433 EP - 443 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a5/ LA - ru ID - SVMO_2021_23_4_a5 ER -
%0 Journal Article %A A. A. Lytaev %A I. Yu. Popov %T Simulation of switchers for CNOT-gates based on optical waveguide interaction with coupled mode theory %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2021 %P 433-443 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a5/ %G ru %F SVMO_2021_23_4_a5
A. A. Lytaev; I. Yu. Popov. Simulation of switchers for CNOT-gates based on optical waveguide interaction with coupled mode theory. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 433-443. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a5/
[1] J. Cirac, P. Zoller, “Quantum computations with cold trapped ions”, Physical Review Letters, 74:20 (1995), 4091-4094 | DOI
[2] A. Blais, R. S. Huang, A. Wallraff, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation”, Physical Review A, 69:6 (2004) | DOI
[3] D. G. Cory, A. F. Fahmy, T. F. Havel, “Ensemble quantum computing by NMR-spectroscopy”, Proceedings of the National Academy of Sciences, 94:5 (1997), 1634–1639 | DOI
[4] E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics”, Nature, 409:6816 (2001), 249–257 | DOI
[5] G. P. Miroshnichenko, “Linear optical quantum computing”, Nanosystems: Physics, Chemistry, Mathematics, 3:4 (2012), 36–53 (In Russ.)
[6] G. J. Milburn, “Quantum optical Fredkin gate”, Physical Review Letters, 62:18 (1989), 2124–2127 | DOI
[7] J. Fu, T. Shaofang, “Quantum Computations with Transverse Modes of an Optical Field Propagating in Waveguides”, Chinese Physics Letters, 20:9 (2003), 1426–1429 | DOI
[8] M. P. Faleeva, I. Y. Popov, “On quantum bit coding by Gaussian beam modes for the quantum key distribution”, Nanosystems: Physics, Chemistry, Mathematics, 11:6 (2020), 651–658 | DOI
[9] D. Gloge, D. Marcuse, “Formal Quantum Theory of Light Rays”, Journal of the Optical Society of America, 59:12 (1969), 1629–1631 | DOI
[10] J. Fu, T. Shaofang, J. Deng, “Classical simulation of quantum entanglement using optical transverse modes in multimode waveguides”, Physical Review A, 70:4 (2005) | DOI
[11] D. Marcuse, Light transmission optics, Van Nostrand Reinhold, New-York, 1982, 534 pp.