Theoretical analysis of fully conservative difference schemes with adaptive viscosity
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 412-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the equations of gas dynamics in Eulerian variables, a family of two-layer in time completely conservative difference schemes with space-profiled time weights is constructed. Considerable attention is paid to the methods of constructing regularized flows of mass, momentum, and internal energy that do not violate the properties of complete conservatism of difference schemes of this class, to the analysis of their amplitudes and the possibility of their use on non-uniform grids. Effective preservation of the balance of internal energy in this type of divergent difference schemes is ensured by the absence of constantly operating sources of difference origin that produce "computational" entropy (including those based on singular features of the solution). The developed schemes can be easily generalized in order to calculate high-temperature flows in media that are nonequilibrium in temperature (for example, in a plasma with a difference in the temperatures of the electronic and ionic components), when, with the set of variables necessary for describing the flow, it is not enough to equalize the total energy balance.
Keywords: completely conservative difference schemes, support operator method, gas dynamics.
@article{SVMO_2021_23_4_a3,
     author = {M. E. Ladonkina and Yu. A. Poveschenko and O. R. Rahimly and H. Zhang},
     title = {Theoretical analysis of fully conservative difference schemes with adaptive viscosity},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {412--423},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a3/}
}
TY  - JOUR
AU  - M. E. Ladonkina
AU  - Yu. A. Poveschenko
AU  - O. R. Rahimly
AU  - H. Zhang
TI  - Theoretical analysis of fully conservative difference schemes with adaptive viscosity
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 412
EP  - 423
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a3/
LA  - ru
ID  - SVMO_2021_23_4_a3
ER  - 
%0 Journal Article
%A M. E. Ladonkina
%A Yu. A. Poveschenko
%A O. R. Rahimly
%A H. Zhang
%T Theoretical analysis of fully conservative difference schemes with adaptive viscosity
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 412-423
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a3/
%G ru
%F SVMO_2021_23_4_a3
M. E. Ladonkina; Yu. A. Poveschenko; O. R. Rahimly; H. Zhang. Theoretical analysis of fully conservative difference schemes with adaptive viscosity. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 412-423. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a3/

[1] A. A. Samarskii, Y. P. Popov, Difference methods for solving problems of gas dynamics., Nauka Publ., Moscow, 2016, 424 pp. (In Russ.)

[2] Y. P. Popov, A. A. Samarskii, “Completely Conservative Difference Schemes”, Journal of Computational Mathematics and Mathematical Physics, 9:4 (1969), 953-958 (In Russ.) | Zbl

[3] A. V. Kuzmin, V. L. Makarov, “On one construction algorithm completely conservative difference schemes”, Journal of Computational Mathematics and Mathematical Physics, 22:4 (1982), 123-132 (In Russ.)

[4] A. V. Kuzmin , V. L. Makarov, G. V. Meladze, “On a completely conservative difference scheme for the equation of gas dynamics in Euler variables”, Journal of Computational Mathematics and Mathematical Physics, 20:1 (1980), 171-181 (In Russ.) | MR

[5] V. M. Goloviznin, I. V. Krayushkin, M. A. Ryazanov, A. A. Samarskii, “Two-dimensional completely conservative difference schemes of gas dynamics with separated velocities”, Preprints of the Keldysh Institute of Applied Mathematics, Academy of Sciences of SSSR, 105 (1983), 1–32 (In Russ.)

[6] A. V. Koldoba, Y. A. Poveschenko, Y. P. Popov, “Two-layer completely conservative difference schemes for gas dynamics equations in Euler variables”, Journal of Computational Mathematics and Mathematical Physics, 27:5 (1987), 779-784 (In Russ.) | MR | Zbl

[7] A. V. Koldoba, O. A. Kuznetsov, Y. A. Poveschenko, “On one approach to the calculation of gas dynamics problems with a variable quasiparticle mass”, Preprints of the Keldysh Institute of Applied Mathematics, Academy of Sciences of SSSR, 1985, no. 57 (In Russ.) | Zbl

[8] A. V. Koldoba, Y. A. Poveschenko, “Completely conservative difference schemes for equations of gas dynamics in the presence of mass sources”, Preprints of the Keldysh Institute of Applied Mathematics, Academy of Sciences of SSSR, 1982, no. 160 (In Russ.)

[9] A. A. Samarskiy, A. V. Koldoba, Y. A. Poveschenko, V. F. Tishkin, A. P. Favorskiy, Difference schemes on irregular grids, Kriteriy Publ., Minsk, 1996, 275 pp. (In Russ.)

[10] A. V. Koldoba, Y. A. Poveschenko, I. V. Gasilova, E. Y. Dorofeeva, “Difference schemes of the support operator method for equations of elasticity theories”, Math. Modeling, 24:12 (2012), 86-96 (In Russ.) | MR | Zbl

[11] Y. A. Poveschenko, V. O. Podryga, Y. S. Sharova, “Integrally-consistent methods for calculating self-gravitating and magnetohydrodynamic phenomena”, Preprints of the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 2018, no. 160 (In Russ.) | DOI

[12] Y. V. Popov, I. V. Fryazinov, Method of adaptive artificial viscosity numerical solution of equations of gas dynamics, Krasand Publ., Moscow, 2014, 275 pp. (In Russ.)

[13] Y. A. Poveschenko, M. E. Ladonkin, V. O. Podryga, O. R. Rahimli, Y. S. Sharova, “On one two-layer completely conservative difference scheme of gas dynamics in Euler variables with adaptive regularization”, Preprints of the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 2019, no. 14, 23 (In Russ.) | DOI

[14] O. Rahimly, V. Podryga, Y. Poveshchenko, P. Rahimly, Y. Sharova, Two-layer completely conservative difference scheme of gas dynamics in eulerian variables with adaptive regularization of solution, Springer, 2020 | DOI | MR | Zbl