Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_4_a3, author = {M. E. Ladonkina and Yu. A. Poveschenko and O. R. Rahimly and H. Zhang}, title = {Theoretical analysis of fully conservative difference schemes with adaptive viscosity}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {412--423}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a3/} }
TY - JOUR AU - M. E. Ladonkina AU - Yu. A. Poveschenko AU - O. R. Rahimly AU - H. Zhang TI - Theoretical analysis of fully conservative difference schemes with adaptive viscosity JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 412 EP - 423 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a3/ LA - ru ID - SVMO_2021_23_4_a3 ER -
%0 Journal Article %A M. E. Ladonkina %A Yu. A. Poveschenko %A O. R. Rahimly %A H. Zhang %T Theoretical analysis of fully conservative difference schemes with adaptive viscosity %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2021 %P 412-423 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a3/ %G ru %F SVMO_2021_23_4_a3
M. E. Ladonkina; Yu. A. Poveschenko; O. R. Rahimly; H. Zhang. Theoretical analysis of fully conservative difference schemes with adaptive viscosity. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 412-423. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a3/
[1] A. A. Samarskii, Y. P. Popov, Difference methods for solving problems of gas dynamics., Nauka Publ., Moscow, 2016, 424 pp. (In Russ.)
[2] Y. P. Popov, A. A. Samarskii, “Completely Conservative Difference Schemes”, Journal of Computational Mathematics and Mathematical Physics, 9:4 (1969), 953-958 (In Russ.) | Zbl
[3] A. V. Kuzmin, V. L. Makarov, “On one construction algorithm completely conservative difference schemes”, Journal of Computational Mathematics and Mathematical Physics, 22:4 (1982), 123-132 (In Russ.)
[4] A. V. Kuzmin , V. L. Makarov, G. V. Meladze, “On a completely conservative difference scheme for the equation of gas dynamics in Euler variables”, Journal of Computational Mathematics and Mathematical Physics, 20:1 (1980), 171-181 (In Russ.) | MR
[5] V. M. Goloviznin, I. V. Krayushkin, M. A. Ryazanov, A. A. Samarskii, “Two-dimensional completely conservative difference schemes of gas dynamics with separated velocities”, Preprints of the Keldysh Institute of Applied Mathematics, Academy of Sciences of SSSR, 105 (1983), 1–32 (In Russ.)
[6] A. V. Koldoba, Y. A. Poveschenko, Y. P. Popov, “Two-layer completely conservative difference schemes for gas dynamics equations in Euler variables”, Journal of Computational Mathematics and Mathematical Physics, 27:5 (1987), 779-784 (In Russ.) | MR | Zbl
[7] A. V. Koldoba, O. A. Kuznetsov, Y. A. Poveschenko, “On one approach to the calculation of gas dynamics problems with a variable quasiparticle mass”, Preprints of the Keldysh Institute of Applied Mathematics, Academy of Sciences of SSSR, 1985, no. 57 (In Russ.) | Zbl
[8] A. V. Koldoba, Y. A. Poveschenko, “Completely conservative difference schemes for equations of gas dynamics in the presence of mass sources”, Preprints of the Keldysh Institute of Applied Mathematics, Academy of Sciences of SSSR, 1982, no. 160 (In Russ.)
[9] A. A. Samarskiy, A. V. Koldoba, Y. A. Poveschenko, V. F. Tishkin, A. P. Favorskiy, Difference schemes on irregular grids, Kriteriy Publ., Minsk, 1996, 275 pp. (In Russ.)
[10] A. V. Koldoba, Y. A. Poveschenko, I. V. Gasilova, E. Y. Dorofeeva, “Difference schemes of the support operator method for equations of elasticity theories”, Math. Modeling, 24:12 (2012), 86-96 (In Russ.) | MR | Zbl
[11] Y. A. Poveschenko, V. O. Podryga, Y. S. Sharova, “Integrally-consistent methods for calculating self-gravitating and magnetohydrodynamic phenomena”, Preprints of the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 2018, no. 160 (In Russ.) | DOI
[12] Y. V. Popov, I. V. Fryazinov, Method of adaptive artificial viscosity numerical solution of equations of gas dynamics, Krasand Publ., Moscow, 2014, 275 pp. (In Russ.)
[13] Y. A. Poveschenko, M. E. Ladonkin, V. O. Podryga, O. R. Rahimli, Y. S. Sharova, “On one two-layer completely conservative difference scheme of gas dynamics in Euler variables with adaptive regularization”, Preprints of the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 2019, no. 14, 23 (In Russ.) | DOI
[14] O. Rahimly, V. Podryga, Y. Poveshchenko, P. Rahimly, Y. Sharova, Two-layer completely conservative difference scheme of gas dynamics in eulerian variables with adaptive regularization of solution, Springer, 2020 | DOI | MR | Zbl