Optimal with respect to accuracy methods for evaluating hypersingular integrals
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 360-378

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we constructed optimal with respect to order quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions $\Omega_{r,\gamma}^{u}(\Omega,M),$ $\bar \Omega_{r,\gamma}^{u}(\Omega,M)$, $\Omega=[-1,1]^l,$ $l=1,2,\ldots,M=Const,$ and $\gamma$ is a real positive number. The functions that belong to classes $\Omega_{r,\gamma}^{u}(\Omega,M)$ and $\bar \Omega_{r,\gamma}^{u}(\Omega,M)$ have bounded derivatives up to the $r$th order in domain $\Omega$ and derivatives up to the $s$th order $(s=r+\lceil \gamma \rceil)$ in domain $\Omega \backslash \Gamma,$ $\Gamma = \partial \Omega.$ Moduli of derivatives of the $v$th order $(r v \le s)$ are power functions of $d(x,\Gamma)^{-1}(1+|\ln d(x,\Gamma)|),$ where $d(x,\Gamma)$ is a distance between point $x$ and $\Gamma.$ The interest in these classes of functions is due to the fact that solutions of singular and hypersingular integral equations are their members. Moreover various physical fields, in particular gravitational and electromagnetic fields belong to these classes as well. We give definitions of optimal with respect to accuracy methods for solving hypersingular integrals. We constructed optimal with respect to order of accuracy quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions $\Omega_{r,\gamma}^{u}(\Omega,M)$ and $\bar \Omega_{r,\gamma}^{u}(\Omega,M)$.
Keywords: hypersingular integrals, optimal methods.
Mots-clés : quadrature formulas
@article{SVMO_2021_23_4_a0,
     author = {I. V. Boykov and A. I. Boikova},
     title = {Optimal with respect to accuracy methods for evaluating hypersingular integrals},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {360--378},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a0/}
}
TY  - JOUR
AU  - I. V. Boykov
AU  - A. I. Boikova
TI  - Optimal with respect to accuracy methods for evaluating hypersingular integrals
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 360
EP  - 378
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a0/
LA  - ru
ID  - SVMO_2021_23_4_a0
ER  - 
%0 Journal Article
%A I. V. Boykov
%A A. I. Boikova
%T Optimal with respect to accuracy methods for evaluating hypersingular integrals
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 360-378
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a0/
%G ru
%F SVMO_2021_23_4_a0
I. V. Boykov; A. I. Boikova. Optimal with respect to accuracy methods for evaluating hypersingular integrals. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 360-378. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a0/