Optimal with respect to accuracy methods for evaluating hypersingular integrals
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 360-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we constructed optimal with respect to order quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions $\Omega_{r,\gamma}^{u}(\Omega,M),$ $\bar \Omega_{r,\gamma}^{u}(\Omega,M)$, $\Omega=[-1,1]^l,$ $l=1,2,\ldots,M=Const,$ and $\gamma$ is a real positive number. The functions that belong to classes $\Omega_{r,\gamma}^{u}(\Omega,M)$ and $\bar \Omega_{r,\gamma}^{u}(\Omega,M)$ have bounded derivatives up to the $r$th order in domain $\Omega$ and derivatives up to the $s$th order $(s=r+\lceil \gamma \rceil)$ in domain $\Omega \backslash \Gamma,$ $\Gamma = \partial \Omega.$ Moduli of derivatives of the $v$th order $(r v \le s)$ are power functions of $d(x,\Gamma)^{-1}(1+|\ln d(x,\Gamma)|),$ where $d(x,\Gamma)$ is a distance between point $x$ and $\Gamma.$ The interest in these classes of functions is due to the fact that solutions of singular and hypersingular integral equations are their members. Moreover various physical fields, in particular gravitational and electromagnetic fields belong to these classes as well. We give definitions of optimal with respect to accuracy methods for solving hypersingular integrals. We constructed optimal with respect to order of accuracy quadrature formulas for evaluating one- and multidimensional hypersingular integrals on classes of functions $\Omega_{r,\gamma}^{u}(\Omega,M)$ and $\bar \Omega_{r,\gamma}^{u}(\Omega,M)$.
Keywords: hypersingular integrals, optimal methods.
Mots-clés : quadrature formulas
@article{SVMO_2021_23_4_a0,
     author = {I. V. Boykov and A. I. Boikova},
     title = {Optimal with respect to accuracy methods for evaluating hypersingular integrals},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {360--378},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a0/}
}
TY  - JOUR
AU  - I. V. Boykov
AU  - A. I. Boikova
TI  - Optimal with respect to accuracy methods for evaluating hypersingular integrals
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 360
EP  - 378
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a0/
LA  - ru
ID  - SVMO_2021_23_4_a0
ER  - 
%0 Journal Article
%A I. V. Boykov
%A A. I. Boikova
%T Optimal with respect to accuracy methods for evaluating hypersingular integrals
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 360-378
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a0/
%G ru
%F SVMO_2021_23_4_a0
I. V. Boykov; A. I. Boikova. Optimal with respect to accuracy methods for evaluating hypersingular integrals. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 4, pp. 360-378. http://geodesic.mathdoc.fr/item/SVMO_2021_23_4_a0/

[1] A. I. Neckrasov, Wave theory in unsteady flow, USSR Science Academy Publ., Moscow, 1947 (In Russ.) | MR

[2] R. Bisplinghoff, H. Ashley, R. Halfman, Aeroelasticity, Inostrannaya Literatura Publ., Moscow, 1958, 283 pp. (In Russ.)

[3] H. Ashlay, M. Landahl, Aerodynamics of wings and bodies, Mashinostroyeniye Publ., Moscow, 1969, 129 pp. (In Russ.)

[4] G. M. Vainikko, L. N. Lifanov, I. K. Poltavsky, Numerical methods in hypersingular integral equarions and their applications, Yanus-K, Moscow, 2001, 508 pp. (In Russ.)

[5] Z. T. Nazarcyk, Numerical study of diffracion on cylynder structures, Naukova dumka Publ., Kiev, 1989, 256 pp. (In Russ.)

[6] G. I. Marchuk, V. I. Lebedev, Numerical methods in neutron transfer theory, Atomizdat Publ., Moscow, 1971, 496 pp. (In Russ.) | MR

[7] I. V. Boykov, A. I. Boykova, Approximate methods for solving direct and inverce gravitation problems, Penza State University Publ., Penza, 2013, 510 pp. (In Russ.)

[8] F. D. Gakhov, Boundary problems, Nauka Publ., Moscow, 1977, 640 pp. (In Russ.)

[9] I. V. Boykov, A. I. Boykova, “Analytical methods for solving singular and hypersingular integral equations”, Izvestiya vuzov. Volga region. Mathematics, 2017, no. 2, 63-78 (In Russ.) | DOI

[10] I. V. Ivanov, Approximation theory and its application to numerical solution of singular integral equations, Naukova dumka Publ., Kiev, 1968, 288 pp. (In Russ.)

[11] I. K. Lifanov, Singular integral equations method and implementation in mathematical physics, aerodynamics, elasticity theory and wave diffraction, Yanus Publ., Moscow, 1995, 520 pp. (In Russ.)

[12] I. V. Boykov, Approximate methods for evaluating singular and hypersingular integrals. Part 1. Singular integrals, Penza State University Publ., Penza, 2005, 360 pp. (In Russ.) | MR

[13] I. V Boykov, Approximate methods for evaluating singular and hypersingular integrals. Part 2. Hypersingular integrals, Penza State University Publ., Penza, 2009, 252 pp. (In Russ.) | MR

[14] Sh. C. Hubezhti, Quadrature formulas for singular integrals and applications, YUMI VNTS RAN I RSO-A Publ., Vladikavkaz, 2011, 235 pp. (In Russ.)

[15] S. Frank, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New York, 1993, 565 pp. | MR | Zbl

[16] S. Frank, Handbook of sink numerical methods, CRC Press, Boca Raton, 2011, 482 pp.

[17] I. V. Boykov, E. S. Ventsel, A. I. Boykova, “Accuracy optimal methods for evaluating hypersingular integrals”, Applied Numerical Mathematics, 59:6 (2009), 1366-1385 | DOI | MR | Zbl

[18] I. V. Boykov, M. A. Semov, “One method of calculating hypersingular integrals”, Izvestiya vuzov, 2016, no. 3, 3–17 (In Russ.) | Zbl

[19] A. V. Saakyan, “Solving the problem for a boundary crack with hypersingular equation by mechanical quadratures”, Armenia National Academy of Science Proceedings. Mechanics, 73:2 (2020), 44-57 (In Russ.) | DOI | MR

[20] A. V. Saakyan, “Kvadraturnaya formula dlya gipersingulyarnogo integrala, soderzhaschego vesovuyu funktsiyu mnogochlenov Yakobi s kompleksnymi pokazatelyami”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2020, no. 2, 94-100 (In Russ.) | DOI

[21] M. C. De Bonis, D. Occorsio, “Numerical methods for hypersingular integrals on the real line”, Dolomites Research Notes on Approximation, 10 (2017), 97–117 | MR | Zbl

[22] C. Hu, X. He, T. Lu, “Euler-Maclaurin expansions and approximations of hypersingular integrals”, Discrete. Continuous Dynamical Systems – B, 20:5 (2015), 1355–1375 | DOI | MR | Zbl

[23] Cheuk-Yu Lee, Hui Wang, Qing-Hua Qin, “Efficient hypersingular line and surface integrals direct evaluation by complex variable differentiation method”, Applied Mathematics and Computation, 316:C (2018), 256–281 | DOI | MR | Zbl

[24] A. M. Korsunsky, “On the use of interpolative quadratures for hypersingular integrals in fracture mechanics”, Procceding of the Royal Society. A. Mathematical, Physical and Engineering Sciences, 2002, 2721–2733 | DOI | MR | Zbl

[25] P. Kolm, V. Rokhlin, “Numerical quadratures for singular and hypersingular integrals”, Computers and Mathematics with Applications, 41 (2001), 327–352 | DOI | MR | Zbl

[26] L. Yu. Plieva, “Quadrature interpolation type formulas for hypersingular integrals in the interval of integration”, Siberian Journal of Numerical Mathematics, 19:4 (2016), 419-428 (In Russ.) | MR | Zbl

[27] S. J. Obaiys, R. W. Ibrahim, A. F. Ahmad, “Hypersingular integrals in integral equations and inequalities: fundamental review study”, Differential and Integral Inequalities, Springer, 2019, 687–717 | DOI | Zbl

[28] X. Zhang, J. Wu, D. Yu, “Superconvergence of the composite Simpson's rule for a certain finite-part integral and its applications”, Journal of Computational and Applied Mathematics, 223:2 (2009), 598–613 | DOI | MR | Zbl

[29] I. V. Boikov, P. V. Aikashev, “Priblizhennye metody vychisleniya gipersingulyarnykh integralov”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 1, 66-84 (In Russ.) | DOI

[30] J. Hadamard, Lecons sur la propagation des ondes et les equations de l'hydrodynamique, Herman, Paris, 1903, 320 pp.

[31] Zh. Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, Moskva, 1978, 351 pp.

[32] J. Hadamard, Cauchy problem for linear equations with partial derivatives of hyperbolic type, Nauka Publ., Moscow, 1978, 351 pp. (In Russ.) | MR

[33] L. A. Chikin, “Special cases for Riemann boundary problem and singular integrals”, Kazan State University Notes, 113:10 (1953), 57-105 (In Russ.)

[34] I. V. Boykov, “Approximation of some function classes with local splines”, Computational Mathematics and Mathematical Physics, 38:1 (1998), 25-33 (In Russ.) | MR

[35] I. V. Boykov, Optimal methods for functions approximation and integrals calculation, Penza State University Publ., Penza, 2007, 236 pp. (In Russ.)

[36] K. I. Babenko, “On some problems of approximation theory and numerical analysis”, Russian Mathematical Surveys, 40:1 (1985), 3-28 (In Russ.) | MR

[37] N. S. Bahvalov, “On some optimal methods for mathematical physics problems solutions”, Computational Mathematics and Mathematical Physics, II:3 (1970), 555-568 (In Russ.)

[38] I. V. Boykov, Yu. F. Zakharova, “Optimal methods for evaluating multidimensional hypersingular integrals”, Izvestiya vuzov. Volga region. Mathematics, 21:1 (2012), 3-21 (In Russ.)

[39] I. P. Natanson, Constructive theory of functions, GIFML Publ., Moscow, Leningrad, 1949, 688 pp. (In Russ.) | MR

[40] I. V. Boykov, “Optimal cubature formulas for evaluating of multidimensional integrals on class $Q_{r,\gamma}(\Omega,M)$”, Computational Mathematics and Mathematical Physics, 29:8 (1990), 1123-1132 (In Russ.) | MR

[41] I. V. Boykov, “Optimal with respect to order cubature formulas for calculating multidimensional integrals in weighted Sobolev spaces”, Siberian Journal of Numerical Mathematics, 2016, no. 3, 543-561 (In Russ.) | Zbl