Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_2_a4, author = {S. A. Sukov}, title = {Load balancing method for heterogeneous {CFD} algorithms}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {193--206}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a4/} }
S. A. Sukov. Load balancing method for heterogeneous CFD algorithms. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 2, pp. 193-206. http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a4/
[1] M-S. Liou, K-H. Kao, Progress in Grid Generation: From Chimera to DRAGON Grids, National Aeronautics and Space Adminstration Publ., Cleveland, 1994, 26 pp.
[2] P. Zaspel, M. Griebel, “Solving incompressible two-phase flows on multi-GPU clusters”, Computers and Fluids, 80 (2013), 356–364 | DOI | MR | Zbl
[3] A. A. Davydov, B. N. Chetverushkin, E. V. Shilnikov, “Simulating flows of incompressible and weakly compressible fluids on multicore hybrid computer systems”, Comput. Math. and Math. Phys., 50 (2010), 2157–2165 | DOI | MR | Zbl
[4] M. M. Krasnov, P. A. Kuchugov, M. E. Ladonkina, V. F. Tishkin, “Discontinuous Galerkin method on three-dimensional tetrahedral grids: Using the operator programming method”, Math. Models Comput. Simul., 9:5 (2017), 529–543 | DOI | MR
[5] A. Gorobets, S. Soukov, P. Bogdanov, “Multilevel parallelization for simulating turbulent flows on most kinds of hybrid supercomputers”, Computers and Fluids, 173 (2018), 171–177 | DOI | MR | Zbl
[6] K. Schloegel, G. Karypis, V. Kumar, “Parallel multilevel algorithms for multiconstraint graph partitioning”, Euro-Par 2000 Parallel Processing, eds. A. Bode, T. Ludwig, W. Karl, R. Wismuller, Springer, Berlin-Heidelberg, 2000, 296–310 | DOI
[7] E. N. Golovchenko, M. A. Kornilina, M. V. Yakobovskiy, “Algorithms in the parallel parti-tioning tool GridSpiderPar for large mesh decomposition”, Proceedings of the 3rd Inter-national Conference on Exascale Applications and Software (EASC 2015), University of Edinburgh, 2015, 120–125
[8] J. Blazek, Computational Fluid Dynamics: Principles and Applications, Elsevier, Amsterdam, 2001, 470 pp. | MR | Zbl
[9] S. Kim, D. Caraeni, B. Makarov, “A Multidimensional Linear Reconstruction Scheme for Arbitrary Unstructured Grids”, Technical report., AIAA 16th Computational Fluid Dynamics Conference (Orlando, Florida American Institute of Aeronautics and Astronautics. June 2003), 2003 | DOI
[10] S. A. Soukov, A. V. Gorobets, P. B. Bogdanov, “Modeling Compressible Flows on All Existing Hybrid Supercomputers”, Math. Models Comput. Simul., 10 (2018), 135–144 | DOI | MR
[11] T. Nagata, T. Nonomura, S. Takahashi, Y. Mizuno, K. Fukuda, “Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation”, Physics of Fluids, 28 (2016), 056101-1–056101-20 | DOI | MR