Simplification method for nonlinear equations of monotone type in Banach space
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 2, pp. 185-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space, we study an operator equation with a monotone operator $T.$ The operator is an operator from a Banach space to its conjugate, and $T=AC,$ where $A$ and $C$ are operators of some classes. The considered problem belongs to the class of ill-posed problems. For this reason, an operator regularization method is proposed to solve it. This method is constructed using not the operator $T$ of the original equation, but a more simple operator $A,$ which is $B$-monotone, $B=C^{-1}.$ The existence of the operator $B$ is assumed. In addition, when constructing the operator regularization method, we use a dual mapping with some gauge function. In this case, the operators of the equation and the right-hand side of the given equation are assumed to be perturbed. The requirements on the geometry of the Banach space and on the agreement conditions for the perturbation levels of the data and of the regularization parameter are established, which provide a strong convergence of the constructed approximations to some solution of the original equation. An example of a problem in Lebesgue space is given for which the proposed method is applicable.
Keywords: Banach space, conjugate space, strictly convex space, $E$-space, monotone operator, $B$-monotone operator, dual map with gauge function, operator regularization method, perturbed data
Mots-clés : convergence.
@article{SVMO_2021_23_2_a3,
     author = {I. P. Ryazantseva},
     title = {Simplification method for nonlinear equations of monotone type in {Banach} space},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {185--192},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a3/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - Simplification method for nonlinear equations of monotone type in Banach space
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 185
EP  - 192
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a3/
LA  - ru
ID  - SVMO_2021_23_2_a3
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T Simplification method for nonlinear equations of monotone type in Banach space
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 185-192
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a3/
%G ru
%F SVMO_2021_23_2_a3
I. P. Ryazantseva. Simplification method for nonlinear equations of monotone type in Banach space. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 2, pp. 185-192. http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a3/

[1] I. P. Ryazantseva, “First-order continuous regularization methods for generalized variational inequalities”, Computational Mathematics and Mathematical Physics, 50:4 (2010), 606–619 | DOI | MR | Zbl

[2] M. M. Vainberg, Variational methods and method of monotone operators in theory of nonlinear equations, Nauka Publ., Moscow, 1972, 416 pp. (In Russ.)

[3] Ya. Alber, I. Ryazantseva, Nonlinear ill-posed problems of monotone type, Springer, Dordrecht, 2006, 410 pp. | DOI | MR | Zbl

[4] I. P. Ryazantseva, Selected topics of the theory of operators of monotone type, Nizhny Novgorod State Tehnical University named after R. E. Alekseev Publ., Nizhny Novgorod, 2008, 272 pp. (In Russ.)