Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_2_a2, author = {A. I. Morozov}, title = {Realization of homotopy classes of torus homeomorphisms by the simplest structurally stable diffeomorphisms}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {171--184}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a2/} }
TY - JOUR AU - A. I. Morozov TI - Realization of homotopy classes of torus homeomorphisms by the simplest structurally stable diffeomorphisms JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 171 EP - 184 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a2/ LA - ru ID - SVMO_2021_23_2_a2 ER -
%0 Journal Article %A A. I. Morozov %T Realization of homotopy classes of torus homeomorphisms by the simplest structurally stable diffeomorphisms %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2021 %P 171-184 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a2/ %G ru %F SVMO_2021_23_2_a2
A. I. Morozov. Realization of homotopy classes of torus homeomorphisms by the simplest structurally stable diffeomorphisms. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 2, pp. 171-184. http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a2/
[1] A. N. Bezdenezhnykh, V. Z. Grines, “Dynamical Properties and Topological Classification of Gradient-Like Diffeomorphisms on Two-Dimensional Manifolds I”, Sel. Math. Sov., 11:1 (1992), 1-11 (In Russ.) | MR | MR
[2] A. N. Bezdenezhykh, V. Z. Grines, “Realization of Gradient-like diffeomorphisms of two-dimensional manifolds”, Sel. Math. Sov., 1992, 19-23 (In Russ.) | MR | MR | Zbl
[3] A. Yu. Zhirov, R. V. Plikin, “On the relationship between one-dimensional hyperbolic attractors of surface diffeomorphisms and generalized pseudo-Anosov diffeomorphisms”, Mathematical Notes, 58:1 (1995), 779-781 (in Russ.) | DOI | MR | Zbl
[4] V. Z. Grines, E. D. Kurenkov, “Diffeomorphisms of 2-manifolds with one-dimensional spaciously situated basic sets”, Izvestiya: Mathematics, 84:5 (2020), 862–909 (in Russ.) | DOI | DOI | MR | Zbl
[5] B. Farb, D. Margalit, A primer on mapping class groups (pms-49), Princeton University Press, Princeton, 2011, 489 pp. (In En.) | MR
[6] J. Nielsen, “Untersuchungen zur Topologie der geschlossenen zweiseitigen Flachen”, Acta Mathematica, 50 (1927), 189-358. (In Ger.) | DOI | MR | Zbl
[7] R. Baer, “Isotopie von Kurven auf orientierbaren, geschlossenen Flachen und ihr Zusammenhang mit de”, Journal far die reine und angewandte Mathematik, 159 (1928), 101-116 (In Ger.) | MR | Zbl
[8] S. Batterson, “The dynamics of Morse-Smale diffeomorphisms on the torus”, Transactions of the American Mathematical Society, 1979, 395-403 (In En.) | DOI | MR | Zbl
[9] J. Franks, “Anocov Diffeomorphisms, Global Analysis”, Proc. Simp. in Pure Math., 14 (1968), 61–94 (In En.) | DOI | MR
[10] T. K. K. Au, F. Luo, T. Yang, Transformation Groups and Moduli Spaces of Curves, 16 (2010), 21-61 | MR
[11] D. Rolfsen, Knots and links, Mathematics Lecture Series, 7, Publish or Perish Inc., Houston, TX, 2003, 439 pp. (In En.) | MR
[12] Zh. Palis, V. M. Di, Geometric Theory of Dynamical Systems: An Introduction, Springer-Verlag, New York, 1982, 210 pp. (In Russ.) | DOI | MR | Zbl