Classification of periodic transformations of an orientable surface of genus two
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 2, pp. 147-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find all admissible topological conjugacy classes of periodic transformations of a two-dimensional surface of genus two. It is proved that there are exactly seventeen pairwise topologically non-conjugate orientation-preserving periodic pretzel transformations. The implementation of all classes by lifting the full characteristics of mappings from a modular surface to a surface of genus two is also presented. The classification results are based on Nielsen's theory of periodic surface transformations, according to which the topological conjugacy class of any such homeomorphism is completely determined by its characteristic. The complete characteristic carries information about the genus of the modular surface, the ramified bearing surface, the periods of the ramification points and the turns around them. The necessary and sufficient conditions for the admissibility of the complete characteristic are described by Nielsen and for any surface they give a finite number of admissible collections. For surfaces of a small genus, one can compile a complete list of admissible characteristics, which was done by the authors of the work for a surface of genus 2.
Keywords: periodic homeomorphisms of surfaces, Nielsen-Thurston theory, topological conjugacy.
Mots-clés : orientable surface
@article{SVMO_2021_23_2_a0,
     author = {D. A. Baranov and O. V. Pochinka},
     title = {Classification of periodic transformations of an orientable surface of genus two},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {147--158},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a0/}
}
TY  - JOUR
AU  - D. A. Baranov
AU  - O. V. Pochinka
TI  - Classification of periodic transformations of an orientable surface of genus two
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 147
EP  - 158
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a0/
LA  - ru
ID  - SVMO_2021_23_2_a0
ER  - 
%0 Journal Article
%A D. A. Baranov
%A O. V. Pochinka
%T Classification of periodic transformations of an orientable surface of genus two
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 147-158
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a0/
%G ru
%F SVMO_2021_23_2_a0
D. A. Baranov; O. V. Pochinka. Classification of periodic transformations of an orientable surface of genus two. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 2, pp. 147-158. http://geodesic.mathdoc.fr/item/SVMO_2021_23_2_a0/

[1] J. Nielsen, “Die struktur periodischer transformationen von flachen”, Medd. Danske Vid. Selsk., 1937, 15

[2] B. Kerekjarto, “Topologische Charakterisierung der linearen Abbildungen”, Acta Scient. Math. Szeged, 6 (1934), 235–262

[3] L.E.J. Brouwer, “Aufzahlung der periodisken Transformationen”, KNAW Proceedings, 21:II (1919), 1352-1356

[4] Fajuyigbe, O., “An extension theorem for periodic transformations of surface”, I. Israel J. Math., 34 (1979), 12-20 | DOI | MR | Zbl

[5] S. Hirose, “On periodic maps over surfaces with large periods”, Tohoku Math. J., 67:10 (2010), 45-53 | DOI | MR

[6] S. Hirose, Y. Kasahara, “A uniqueness of periodic maps on surfaces”, J. Math. Soc. Japan, 68:4 (2016), 1777-1787 | DOI | MR | Zbl

[7] P. A. Smith, “Abelian actions on 2-manifolds”, Michigan Math. J., 14:3 (1967), 257-275 | DOI | MR | Zbl

[8] K. Yokoyama, “Classification of periodic maps on compact surfaces. I”, Tokyo J. Math., 6:1 (1983), 75-94 | DOI | MR | Zbl