Hydrodynamic mechanism of movement of catalytic micro-/nanomotors
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 91-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

A hydrodynamic mechanism of movement of a micro/nanomotor with a dipole charge induced by an electro- catalytic reaction on its surface and the formation of charges in the surrounding liquid is proposed. For this, the dynamics of a dipole aggregate in a cloud of small oppositely charged particles in a viscous fluid surrounding it is simulated. Under the action of the field of the aggregate, the particles in the cloud are set in motion, which forms a flow in the surrounding fluid. In turn, the flow creates a hydrodynamic force that moves the aggregate. The hydrodynamic interaction of all particles in the cloud with each other and with the dipole aggregate is taken into account at their different distributions in the liquid around the dipole. The total charge of all small particles can be either equal to zero or have a non-zero value. The calculations carried out confirmed the possibility of the dipole unit to move in all the cases considered as a result of action of the hydrodynamic force created by the formed flow of the surrounding fluid. In this case, the speed and direction of dipole movement significantly depends both on the distribution of small particles in the surrounding liquid and on their total charge. As the result of asymmetry in the distribution of small charged particles in the surrounding fluid, dipole unit will move not only in longitudinal but also in transverse direction. This leads to the need to use some mechanism of controlling its movement. As such a mechanism the action of an external field can be used, orienting the dipole unit in a given direction of motion. It is proposed to use an external magnetic field for such control. In this case, the dipole aggregate must have a magnetic moment due to the presence of a magnetizable nucleus inside the particles.
Mots-clés : viscous fluid, hydrodynamic interaction
Keywords: charged particles, dipole aggregate, micro-/nanomotor.
@article{SVMO_2021_23_1_a6,
     author = {S. I. Martynov and L. Yu. Tkach},
     title = {Hydrodynamic mechanism of movement of catalytic micro-/nanomotors},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {91--109},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a6/}
}
TY  - JOUR
AU  - S. I. Martynov
AU  - L. Yu. Tkach
TI  - Hydrodynamic mechanism of movement of catalytic micro-/nanomotors
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 91
EP  - 109
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a6/
LA  - ru
ID  - SVMO_2021_23_1_a6
ER  - 
%0 Journal Article
%A S. I. Martynov
%A L. Yu. Tkach
%T Hydrodynamic mechanism of movement of catalytic micro-/nanomotors
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 91-109
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a6/
%G ru
%F SVMO_2021_23_1_a6
S. I. Martynov; L. Yu. Tkach. Hydrodynamic mechanism of movement of catalytic micro-/nanomotors. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 91-109. http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a6/

[1] C. Montemagno, G. Bachand, S. Stelick, M. Bachand, “Constructing biological motor powered nanomechanical devices”, Nanotechnology, 10 (1999), 225–231 | DOI

[2] W. Gao, J. Wang, “Synthetic micro/nanomotors in drug delivery”, Nanoscale, 2014, no. 6, 10486–10494 | DOI

[3] X. Li, Y.-M. Sun, Z.-Y. Zhang, N.-X. Feng, H. Song, Y.-L. Liu, L. Hai, J.-M. Cao, G. P. Wang, “Visible light-driven multimotion modes CNC/TiO2 nanomotors for highly efficient degradation of emerging contaminants”, Carbon, 155 (2019), 195–203 | DOI

[4] W. Gao, B. E.-F. de Avila, L. Zhang, J. Wang, “Targeting and Isolation of cancer cells using micro/nanomotors”, Adv Drug Deliv Rev., 125 (2018), 94–101 | DOI

[5] M. Medina-Sanchez, Xu H. Haifeng, O. G. Schmidt, “Micro- and nano-motors: the new generation of drug carriers”, Therapeutic Ddelivery, 9:4 (2018), 303–316 | DOI

[6] Z. Lin, C. Gao, M. Chen, X. Lin, Q. He, “Collective motion and dynamic self-assembly of colloid motors”, Current Opinion in Colloid Interface Science, 35 (2018), 51–58 | DOI

[7] W. F. Paxton, A. Sen, T. E. Mallouk, “Motility of catalytic nanoparticles through self-generated forces”, Chemistry, 11:22 (2005), 6462–6470 | DOI

[8] W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E. Mallouk, A. Sen, “Catalytically Induced Electrokinetics for Motors and Micropumps”, J. Am. Chem. Soc., 128:46 (2006), 14881–14888 | DOI

[9] Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen, T. E. Mallouk, “Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions”, Langmuir, 22:25 (2006), 10451–10456 | DOI

[10] R. Laocharoensuk, J. Burdick, J. Wang, “Carbon-nanotube-induced acceleration of catalytic nanomotors”, ACS Nano, 2:5 (2008), 1069–1075 | DOI

[11] T. Vissers, A. van Blaaderen, A. Imhof, “Band formation in mixtures of oppositely charged colloids driven by an electric field”, Phys. Rev. Lett., 106:22 (2011), 228303 | DOI

[12] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, J. Bibette, “Microscopic artificial swimmers”, Nature, 437 (2005), 862–865 | DOI

[13] S. Ahmed, W. Wang, L. O. Mair, R. D. Fraleigh, S. Li, L. A. Castro, M. Hoyos, T. J. Huang, T. E. Mallouk, “Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields”, Langmuir, 29:52 (2013), 16113–16118 | DOI

[14] Tailin Xu, L.-P. Xu, X. Zhang, “Ultrasound propulsion of micro-nanomotors”, Applied Materials Today, 9 (2017), 493–503 | DOI

[15] B. Robertsona, R. Kapral, “Nanomotor dynamics in a chemically oscillating medium”, J. Chem. Phys., 142:15 (2015), 154902 | DOI

[16] V. M. Rozenbaum, M. L. Dekhtyar, S. H. Lin, L. I. Trakhtenberg, “Photoinduced diffusion molecular transport”, J. Chem. Phys., 145:6 (2016), 064110 | DOI

[17] I. Santiago, “Nanoscale active matter matters: Challenges and opportunities for self-propelled nanomotors”, Nano Today, 19 (2018), 11–15 | DOI | MR

[18] Y. Xing, Zhou M. Mengyun, X. Du, X. Li, Jianqiang J. Li, T. Xu, X. Zhang, “Hollow meso-porous carbon@Pt Janus nanomotors with dual response of $H_{2}O_{2}$ and near-infrared light for active cargo delivery”, Applied Materials Today, 17 (2019), 85–91 | DOI

[19] J. L. Moran, P. M. Wheat, J. D. Posner, “Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis”, Phys. Rev. E., 81:6 (2010), 065302 | DOI | MR

[20] J. L. Moran, J. D. Posner, “Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis”, J. Fluid Mech., 680 (2011), 31–66 | DOI | MR | Zbl

[21] P. Mitchell, “Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in microorganisms”, Proc. R. Phys. Soc. Edin., 25 (1956), 32–34

[22] S. S. Batsanov, Experimental foundations of structural chemistry (reference manual), Publishing house of standardsIzdatelstvo standartov Publ., Moscow., 1986, 240 pp.

[23] S. I. Martynov, L. Yu. Tkach, “Mechanism of moving particle aggregates in a viscous fluid subjected to a varying uniform external field”, Computational Mathematics and Mathematical Physics, 59:3 (2019), 475–483 | DOI | MR | Zbl

[24] A. I. Zhakin, “Electrohydrodynamics”, Physics - Uspekhi fizicheskikh nauk, 55:5 (2012), 465–488 | DOI | DOI

[25] H. Hasimoto, “On the periodic fundamental solutions of the Stokes’ equations and their application to viscous flow past a cubic array of spheres”, J. Fluid Mech., 5:2 (1959), 317–328 | DOI | MR | Zbl

[26] S. I. Martynovs, “Hydrodynamic interaction of particles”, Izvestiya RAN. Fluid and Gas MechanicsMekhanika zhidkosti I gaza, 1998, no. 2, 112–119 | Zbl

[27] S. I. Martynov, L. Yu. Tkach, “Simulation of particle aggregate dynamics in a viscous fluid”, Computational Mathematics and Mathematical Physics, 55:2 (2015), 282109–118 | DOI

[28] S. I. Martynov, L. Yu. Tkach, “On one model of the dynamics of self-propelled aggregates of particles in a viscous fluid”, Rus. J. Nonlin. Dyn., 12:4 (2016), 605–618 | DOI | MR | Zbl