Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_1_a6, author = {S. I. Martynov and L. Yu. Tkach}, title = {Hydrodynamic mechanism of movement of catalytic micro-/nanomotors}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {91--109}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a6/} }
TY - JOUR AU - S. I. Martynov AU - L. Yu. Tkach TI - Hydrodynamic mechanism of movement of catalytic micro-/nanomotors JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 91 EP - 109 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a6/ LA - ru ID - SVMO_2021_23_1_a6 ER -
S. I. Martynov; L. Yu. Tkach. Hydrodynamic mechanism of movement of catalytic micro-/nanomotors. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 91-109. http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a6/
[1] C. Montemagno, G. Bachand, S. Stelick, M. Bachand, “Constructing biological motor powered nanomechanical devices”, Nanotechnology, 10 (1999), 225–231 | DOI
[2] W. Gao, J. Wang, “Synthetic micro/nanomotors in drug delivery”, Nanoscale, 2014, no. 6, 10486–10494 | DOI
[3] X. Li, Y.-M. Sun, Z.-Y. Zhang, N.-X. Feng, H. Song, Y.-L. Liu, L. Hai, J.-M. Cao, G. P. Wang, “Visible light-driven multimotion modes CNC/TiO2 nanomotors for highly efficient degradation of emerging contaminants”, Carbon, 155 (2019), 195–203 | DOI
[4] W. Gao, B. E.-F. de Avila, L. Zhang, J. Wang, “Targeting and Isolation of cancer cells using micro/nanomotors”, Adv Drug Deliv Rev., 125 (2018), 94–101 | DOI
[5] M. Medina-Sanchez, Xu H. Haifeng, O. G. Schmidt, “Micro- and nano-motors: the new generation of drug carriers”, Therapeutic Ddelivery, 9:4 (2018), 303–316 | DOI
[6] Z. Lin, C. Gao, M. Chen, X. Lin, Q. He, “Collective motion and dynamic self-assembly of colloid motors”, Current Opinion in Colloid Interface Science, 35 (2018), 51–58 | DOI
[7] W. F. Paxton, A. Sen, T. E. Mallouk, “Motility of catalytic nanoparticles through self-generated forces”, Chemistry, 11:22 (2005), 6462–6470 | DOI
[8] W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, T. E. Mallouk, A. Sen, “Catalytically Induced Electrokinetics for Motors and Micropumps”, J. Am. Chem. Soc., 128:46 (2006), 14881–14888 | DOI
[9] Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen, T. E. Mallouk, “Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions”, Langmuir, 22:25 (2006), 10451–10456 | DOI
[10] R. Laocharoensuk, J. Burdick, J. Wang, “Carbon-nanotube-induced acceleration of catalytic nanomotors”, ACS Nano, 2:5 (2008), 1069–1075 | DOI
[11] T. Vissers, A. van Blaaderen, A. Imhof, “Band formation in mixtures of oppositely charged colloids driven by an electric field”, Phys. Rev. Lett., 106:22 (2011), 228303 | DOI
[12] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, J. Bibette, “Microscopic artificial swimmers”, Nature, 437 (2005), 862–865 | DOI
[13] S. Ahmed, W. Wang, L. O. Mair, R. D. Fraleigh, S. Li, L. A. Castro, M. Hoyos, T. J. Huang, T. E. Mallouk, “Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields”, Langmuir, 29:52 (2013), 16113–16118 | DOI
[14] Tailin Xu, L.-P. Xu, X. Zhang, “Ultrasound propulsion of micro-nanomotors”, Applied Materials Today, 9 (2017), 493–503 | DOI
[15] B. Robertsona, R. Kapral, “Nanomotor dynamics in a chemically oscillating medium”, J. Chem. Phys., 142:15 (2015), 154902 | DOI
[16] V. M. Rozenbaum, M. L. Dekhtyar, S. H. Lin, L. I. Trakhtenberg, “Photoinduced diffusion molecular transport”, J. Chem. Phys., 145:6 (2016), 064110 | DOI
[17] I. Santiago, “Nanoscale active matter matters: Challenges and opportunities for self-propelled nanomotors”, Nano Today, 19 (2018), 11–15 | DOI | MR
[18] Y. Xing, Zhou M. Mengyun, X. Du, X. Li, Jianqiang J. Li, T. Xu, X. Zhang, “Hollow meso-porous carbon@Pt Janus nanomotors with dual response of $H_{2}O_{2}$ and near-infrared light for active cargo delivery”, Applied Materials Today, 17 (2019), 85–91 | DOI
[19] J. L. Moran, P. M. Wheat, J. D. Posner, “Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis”, Phys. Rev. E., 81:6 (2010), 065302 | DOI | MR
[20] J. L. Moran, J. D. Posner, “Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis”, J. Fluid Mech., 680 (2011), 31–66 | DOI | MR | Zbl
[21] P. Mitchell, “Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in microorganisms”, Proc. R. Phys. Soc. Edin., 25 (1956), 32–34
[22] S. S. Batsanov, Experimental foundations of structural chemistry (reference manual), Publishing house of standardsIzdatelstvo standartov Publ., Moscow., 1986, 240 pp.
[23] S. I. Martynov, L. Yu. Tkach, “Mechanism of moving particle aggregates in a viscous fluid subjected to a varying uniform external field”, Computational Mathematics and Mathematical Physics, 59:3 (2019), 475–483 | DOI | MR | Zbl
[24] A. I. Zhakin, “Electrohydrodynamics”, Physics - Uspekhi fizicheskikh nauk, 55:5 (2012), 465–488 | DOI | DOI
[25] H. Hasimoto, “On the periodic fundamental solutions of the Stokes’ equations and their application to viscous flow past a cubic array of spheres”, J. Fluid Mech., 5:2 (1959), 317–328 | DOI | MR | Zbl
[26] S. I. Martynovs, “Hydrodynamic interaction of particles”, Izvestiya RAN. Fluid and Gas MechanicsMekhanika zhidkosti I gaza, 1998, no. 2, 112–119 | Zbl
[27] S. I. Martynov, L. Yu. Tkach, “Simulation of particle aggregate dynamics in a viscous fluid”, Computational Mathematics and Mathematical Physics, 55:2 (2015), 282109–118 | DOI
[28] S. I. Martynov, L. Yu. Tkach, “On one model of the dynamics of self-propelled aggregates of particles in a viscous fluid”, Rus. J. Nonlin. Dyn., 12:4 (2016), 605–618 | DOI | MR | Zbl