On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 11-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

stem has a double limit cycle. Analysis of the Poincaré–Pontryagin function constructed for the autonomous system makes it possible to establish the presence of such a cycle. When the condition of commensurability of the natural frequency of the corresponding unperturbed Hamiltonian system with the frequencies of the quasi-periodic perturbation is fulfilled, the unperturbed level becomes resonant. Resonant structures essentially depend on whether the selected resonance levels coincide with the levels that generate limit cycles in the autonomous system. An averaged system is obtained that describes the topology of the neighborhoods of resonance levels. Possible phase portraits of the averaged system are established near the bifurcation case, when the resonance level coincides with the level in whose neighborhood the corresponding autonomous system has a double limit cycle. To illustrate the results obtained, the results of a theoretical study and of a numerical calculation are presented for a specific pendulum-type equation under two-frequency quasi-periodic perturbations.
Keywords: double limit cycle, resonances, averaged systems, pendulum-type equations.
Mots-clés : quasi-periodic perturbations
@article{SVMO_2021_23_1_a0,
     author = {O. S. Kostromina},
     title = {On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear {Hamiltonian} systems},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {11--27},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/}
}
TY  - JOUR
AU  - O. S. Kostromina
TI  - On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 11
EP  - 27
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/
LA  - ru
ID  - SVMO_2021_23_1_a0
ER  - 
%0 Journal Article
%A O. S. Kostromina
%T On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 11-27
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/
%G ru
%F SVMO_2021_23_1_a0
O. S. Kostromina. On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 11-27. http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/

[1] M. S. Berger, Y. Y. Chen, “Forced quasiperiodic and almost periodic oscillations of nonlinear Duffing equations”, Nonlinear Analysis: Theory, Methods and Applications, 19:3 (1992), 249–257 | DOI | MR | Zbl

[2] B. Liu, J. You, “Quasiperiodic solutions of Duffing’s equations”, Nonlinear Analysis: Theory, Methods and Applications, 33:6 (1998), 645–655 | DOI | MR | Zbl

[3] A. D. Grischenko, D. M. Vavriv, “Dynamics of pendulum with a quasiperiodic perturbation”, Technical Physics, 6742:10 (1997), 1115–71120 (In Russ.) | DOI

[4] R. Q. Wang, J. Deng, Z. J. Jing, “Chaos control in duffing system”, Chaos, Solitons and Fractals, 27:1 (2006), 249–257 | DOI | MR | Zbl

[5] Z. Jing, Z. Yang, T. Jiang, “Complex dynamics in Duffing-van der Pol equation”, Chaos, Solitons and Fractals, 27:3 (2006), 722–747 | DOI | MR | Zbl

[6] Z. J. Jing, J. C. Huang, J. Deng, “Complex dynamics in three-well Duffing system with two external forcings”, Chaos, Solitons and Fractals, 33:3 (2007), 795–812 | DOI | MR | Zbl

[7] V. Ravichandran, V. Chinnathambi, S. Rajasekar, “Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force”, Physica A: Statistical Mechanics and Iits Applications, 376 (2007), 223–236 | DOI | MR

[8] T. Jiang, Z. Yang, Z. Jing, “Bifurcations and chaos in the Duffing equation with parametric excitation and single external forcing”, International Journal of Bifurcation and Chaos, 27:8 (2017), 1750125-1-31 | DOI | MR

[9] A. D. Morozov, K. E. Morozov, “Quasiperiodic perturbations of two-dimensional Hamiltonian systems”, Differential Equations, 53:12 (2017), 1557–1566 | DOI | DOI | MR | Zbl

[10] A. D. Morozov, K. E. Morozov, “On synchronization of quasiperiodic oscillations”, Russian Journal of Nonlinear Dynamics, 14:3 (2018), 367–376 | DOI | MR | Zbl

[11] A. D. Morozov, K. E. Morozov, “Global dynamics of systems close to Hamiltonian ones under nonconservative quasi-periodic perturbation”, Russian Journal of Nonlinear Dynamics, 15:2 (2019), 187–198 | DOI | MR | Zbl

[12] T. N. Dragunov, K. E. Morozov, A. D. Morozov, “On global dynamics in Duffing equation with quasiperiodic perturbation”, SVMO, 22:2 (2020), 164–-176 (In Russ.) | DOI

[13] A. D. Morozov, Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva–Izhevsk, 2005, 424 pp.

[14] A. D. Morozov, [Resonances, cycles and chaos in quasiconservative systems], NITC “Regulyarnaya i khaoticheskaya dinamika” Publ, Institut kompyuternykh issledovaniy., Moscow—Izhevsk,, 2005, 424 pp. (In Russ.)

[15] A. D. Morozov, E. A. Mamedov, “On a double cycle and resonances”, Regular and Chaotic Dynamics, 17:1 (2012), 63–71 | DOI | MR | Zbl

[16] V. K. Melnikov, “On stability of a center under time-periodic perturbations”, Trudy Moskovskogo matematicheskogo obschestva, 12 (1963), 3–52 (In Russ.) | MR | Zbl

[17] O. S. Kostromina, “On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019), 228-–244 | DOI | MR | Zbl

[18] A. D. Morozov, T. N. Dragunov, Visualization and analysis of invariant sets of dynamical systems, Institut kompyuternykh issledovaniy Publ., Moscow—Izhevsk,, 2003, 303 pp. (In Russ.) | MR