Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2021_23_1_a0, author = {O. S. Kostromina}, title = {On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear {Hamiltonian} systems}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {11--27}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/} }
TY - JOUR AU - O. S. Kostromina TI - On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2021 SP - 11 EP - 27 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/ LA - ru ID - SVMO_2021_23_1_a0 ER -
%0 Journal Article %A O. S. Kostromina %T On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2021 %P 11-27 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/ %G ru %F SVMO_2021_23_1_a0
O. S. Kostromina. On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 11-27. http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/
[1] M. S. Berger, Y. Y. Chen, “Forced quasiperiodic and almost periodic oscillations of nonlinear Duffing equations”, Nonlinear Analysis: Theory, Methods and Applications, 19:3 (1992), 249–257 | DOI | MR | Zbl
[2] B. Liu, J. You, “Quasiperiodic solutions of Duffing’s equations”, Nonlinear Analysis: Theory, Methods and Applications, 33:6 (1998), 645–655 | DOI | MR | Zbl
[3] A. D. Grischenko, D. M. Vavriv, “Dynamics of pendulum with a quasiperiodic perturbation”, Technical Physics, 6742:10 (1997), 1115–71120 (In Russ.) | DOI
[4] R. Q. Wang, J. Deng, Z. J. Jing, “Chaos control in duffing system”, Chaos, Solitons and Fractals, 27:1 (2006), 249–257 | DOI | MR | Zbl
[5] Z. Jing, Z. Yang, T. Jiang, “Complex dynamics in Duffing-van der Pol equation”, Chaos, Solitons and Fractals, 27:3 (2006), 722–747 | DOI | MR | Zbl
[6] Z. J. Jing, J. C. Huang, J. Deng, “Complex dynamics in three-well Duffing system with two external forcings”, Chaos, Solitons and Fractals, 33:3 (2007), 795–812 | DOI | MR | Zbl
[7] V. Ravichandran, V. Chinnathambi, S. Rajasekar, “Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force”, Physica A: Statistical Mechanics and Iits Applications, 376 (2007), 223–236 | DOI | MR
[8] T. Jiang, Z. Yang, Z. Jing, “Bifurcations and chaos in the Duffing equation with parametric excitation and single external forcing”, International Journal of Bifurcation and Chaos, 27:8 (2017), 1750125-1-31 | DOI | MR
[9] A. D. Morozov, K. E. Morozov, “Quasiperiodic perturbations of two-dimensional Hamiltonian systems”, Differential Equations, 53:12 (2017), 1557–1566 | DOI | DOI | MR | Zbl
[10] A. D. Morozov, K. E. Morozov, “On synchronization of quasiperiodic oscillations”, Russian Journal of Nonlinear Dynamics, 14:3 (2018), 367–376 | DOI | MR | Zbl
[11] A. D. Morozov, K. E. Morozov, “Global dynamics of systems close to Hamiltonian ones under nonconservative quasi-periodic perturbation”, Russian Journal of Nonlinear Dynamics, 15:2 (2019), 187–198 | DOI | MR | Zbl
[12] T. N. Dragunov, K. E. Morozov, A. D. Morozov, “On global dynamics in Duffing equation with quasiperiodic perturbation”, SVMO, 22:2 (2020), 164–-176 (In Russ.) | DOI
[13] A. D. Morozov, Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva–Izhevsk, 2005, 424 pp.
[14] A. D. Morozov, [Resonances, cycles and chaos in quasiconservative systems], NITC “Regulyarnaya i khaoticheskaya dinamika” Publ, Institut kompyuternykh issledovaniy., Moscow—Izhevsk,, 2005, 424 pp. (In Russ.)
[15] A. D. Morozov, E. A. Mamedov, “On a double cycle and resonances”, Regular and Chaotic Dynamics, 17:1 (2012), 63–71 | DOI | MR | Zbl
[16] V. K. Melnikov, “On stability of a center under time-periodic perturbations”, Trudy Moskovskogo matematicheskogo obschestva, 12 (1963), 3–52 (In Russ.) | MR | Zbl
[17] O. S. Kostromina, “On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019), 228-–244 | DOI | MR | Zbl
[18] A. D. Morozov, T. N. Dragunov, Visualization and analysis of invariant sets of dynamical systems, Institut kompyuternykh issledovaniy Publ., Moscow—Izhevsk,, 2003, 303 pp. (In Russ.) | MR