On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 11-27

Voir la notice de l'article provenant de la source Math-Net.Ru

stem has a double limit cycle. Analysis of the Poincaré–Pontryagin function constructed for the autonomous system makes it possible to establish the presence of such a cycle. When the condition of commensurability of the natural frequency of the corresponding unperturbed Hamiltonian system with the frequencies of the quasi-periodic perturbation is fulfilled, the unperturbed level becomes resonant. Resonant structures essentially depend on whether the selected resonance levels coincide with the levels that generate limit cycles in the autonomous system. An averaged system is obtained that describes the topology of the neighborhoods of resonance levels. Possible phase portraits of the averaged system are established near the bifurcation case, when the resonance level coincides with the level in whose neighborhood the corresponding autonomous system has a double limit cycle. To illustrate the results obtained, the results of a theoretical study and of a numerical calculation are presented for a specific pendulum-type equation under two-frequency quasi-periodic perturbations.
Keywords: double limit cycle, resonances, averaged systems, pendulum-type equations.
Mots-clés : quasi-periodic perturbations
@article{SVMO_2021_23_1_a0,
     author = {O. S. Kostromina},
     title = {On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear {Hamiltonian} systems},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {11--27},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/}
}
TY  - JOUR
AU  - O. S. Kostromina
TI  - On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2021
SP  - 11
EP  - 27
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/
LA  - ru
ID  - SVMO_2021_23_1_a0
ER  - 
%0 Journal Article
%A O. S. Kostromina
%T On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2021
%P 11-27
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/
%G ru
%F SVMO_2021_23_1_a0
O. S. Kostromina. On resonances under quasi-periodic perturbations of systems with a double limit cycle, close to two-dimensional nonlinear Hamiltonian systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 23 (2021) no. 1, pp. 11-27. http://geodesic.mathdoc.fr/item/SVMO_2021_23_1_a0/