Approximate solution of hypersingular integral equations on the number axis
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 405-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we investigate approximate methods for solving linear and nonlinear hypersingular integral equations defined on the number axis. We study equations with the second-order singularities because such equations are widely used in problems of natural science and technology. Three computational schemes are proposed for solving linear hypersingular integral equations. The first one is based on the mechanical quadrature method. We used rational functions as the basic ones. The second computational scheme is based on the spline-collocation method with the first-order splines. The third computational scheme uses the zero-order splines. Continuous method for solving operator equations has been used for justification and implementation of the proposed schemes. The application of the method allows to weaken the requirements imposed on the original equation. It is sufficient to require solvability for a given right-hand side. The continuous operator method is based on Lyapunov's stability for solutions of systems of ordinary differential equations. Thus it is stable for perturbations of coefficients and of right-hand sides. Approximate methods for solving nonlinear hypersingular integral equations are presented by the example of the Peierls - Naborro equation of dislocation theory. By analogy with linear hypersingular integral equations, three computational schemes have been constructed to solve this equation. The justification and implementation are based on continuous method for solving operator equations. The effectiveness of the proposed schemes is shown on solving the Peierls - Naborro equation.
Keywords: linear and nonlinear hypersingular integral equations, continuous operator method, collocation method, mechanical quadrature method.
@article{SVMO_2020_22_4_a0,
     author = {I. V. Boykov and P. V. Aykashev and A. I. Boikova},
     title = {Approximate solution of hypersingular integral equations on the number axis},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {405--423},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a0/}
}
TY  - JOUR
AU  - I. V. Boykov
AU  - P. V. Aykashev
AU  - A. I. Boikova
TI  - Approximate solution of hypersingular integral equations on the number axis
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 405
EP  - 423
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a0/
LA  - ru
ID  - SVMO_2020_22_4_a0
ER  - 
%0 Journal Article
%A I. V. Boykov
%A P. V. Aykashev
%A A. I. Boikova
%T Approximate solution of hypersingular integral equations on the number axis
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 405-423
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a0/
%G ru
%F SVMO_2020_22_4_a0
I. V. Boykov; P. V. Aykashev; A. I. Boikova. Approximate solution of hypersingular integral equations on the number axis. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 405-423. http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a0/

[1] Zh. Adamar, Cauchy problem for linear partial derivative equations of hyperbolic type, Nauka Publ., Moscow, 1978, 351 pp. (In Russ.)

[2] A. I. Nekrasov, Wing theory in non-stationary flow, AN SSSR Publ., Moscow, 1947, 65 pp. (In Russ.) | MR

[3] R. Bisplingkhoff, Kh. E. R. Khalfmen, Aeroelasticity, Inostr. Lit. Publ., Moscow, 1958, 283 pp. (In Russ.)

[4] Kh. E. M. Lendal, Aerodynamics of aircraft wings and hulls, Mashinostroyeniye Publ, Moscow, 1969, 129 pp. (In Russ.)

[5] L. A. Chikin, “Special cases of the Riemann boundary value problem and singular integral equations”, Uchenyye zapiski Kazanskogo gosudarstvennogo universiteta, 113:10 (1953), 57–105 (In Russ.)

[6] G. M. Vaynikko. I. K. Lifanov. L. N. Poltavskiy, Numerical methods in hypersingular integral equations and their applications, Yanus-K Publ., Moscow, 2001, 508 pp. (In Russ.)

[7] I. V. Boykov, “Analytical and numerical methods for solving hypersingular integral equations”, Dinamicheskiye sistemy, 9:3 (2009), 244–272 (In Russ.)

[8] J. Gregor, “O aproximaci obrazu v Hilbertove transformaci ortogonalnimi radami racionalnich lomenych funkci”, Applik. Matem. Ceskoslovenska Academie VED, 6:3 (1961), 214–240 | MR | Zbl

[9] I. V. Boykov, V. A. Roudnev, A. I. Boykova, O. A. Baulina, “New iterative method for solving linear and nonlinear hypersingular integral equations”, Applied Numerical Mathematics, 127 (2018), 280–305 | DOI | MR | Zbl

[10] I. V. Boykov, V. A. Roudnev, A. I. Boykova, “Approximate Methods for Solving Linear and Nonlinear Hypersingular Integral Equations”, Axioms, 9:3 (2020), 1–18 | DOI | MR

[11] I.V̇ Boykov, “On a single continuous Method for solving nonlinear operator equations”, Differentsialnyye uravneniya, 48:9 (2012), 1308-1314 (In Russ.) | MR | Zbl

[12] Yu.L. Daletskiy. M.G. Kreyn, Stability of solutions of differential equations in Banach space, Nauka Publ., Moscow, 1970, 535 pp. (In Russ.)

[13] K. Dekker. Ya. Verver., Stability of Runge-Kutta methods for rigid nonlinear differential equations, Mir Publ, Moscow, 1988, 334 pp. (In Russ.)

[14] R. Peierls, “The size of a dislocations”, Proc. Phys. Soc., 52 (1940), 34-40 | DOI

[15] V. Karlin, V.G. Maz'ya, A.B. Movchan, J.R. Willis, R. Bullough, “Numerical Solution of Nonlinear Hypersingular Integral Equations of the Peierls Type in Dislocation Theory”, SIAM J. Appl. Math, 60:2 (2000), 664–678 | DOI | MR | Zbl

[16] I. V. Boykov, E. S. Ventsel, V. A. Roudnev, A. I. Boykova, “An approximate solution of nonlinear hypersingular integral equations”, Applied Numerical Mathematics, 86 (2014), 1-21 | DOI | MR | Zbl

[17] I. V. Boykov, E. S. Ventsel, A. I. Boykova, “An approximate solution of hypersingular integral equations”, Applied Numerical Mathematics, 60:6 (2010), 607–628 | DOI | MR | Zbl