Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_4_a0, author = {I. V. Boykov and P. V. Aykashev and A. I. Boikova}, title = {Approximate solution of hypersingular integral equations on the number axis}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {405--423}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a0/} }
TY - JOUR AU - I. V. Boykov AU - P. V. Aykashev AU - A. I. Boikova TI - Approximate solution of hypersingular integral equations on the number axis JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 405 EP - 423 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a0/ LA - ru ID - SVMO_2020_22_4_a0 ER -
%0 Journal Article %A I. V. Boykov %A P. V. Aykashev %A A. I. Boikova %T Approximate solution of hypersingular integral equations on the number axis %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 405-423 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a0/ %G ru %F SVMO_2020_22_4_a0
I. V. Boykov; P. V. Aykashev; A. I. Boikova. Approximate solution of hypersingular integral equations on the number axis. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 4, pp. 405-423. http://geodesic.mathdoc.fr/item/SVMO_2020_22_4_a0/
[1] Zh. Adamar, Cauchy problem for linear partial derivative equations of hyperbolic type, Nauka Publ., Moscow, 1978, 351 pp. (In Russ.)
[2] A. I. Nekrasov, Wing theory in non-stationary flow, AN SSSR Publ., Moscow, 1947, 65 pp. (In Russ.) | MR
[3] R. Bisplingkhoff, Kh. E. R. Khalfmen, Aeroelasticity, Inostr. Lit. Publ., Moscow, 1958, 283 pp. (In Russ.)
[4] Kh. E. M. Lendal, Aerodynamics of aircraft wings and hulls, Mashinostroyeniye Publ, Moscow, 1969, 129 pp. (In Russ.)
[5] L. A. Chikin, “Special cases of the Riemann boundary value problem and singular integral equations”, Uchenyye zapiski Kazanskogo gosudarstvennogo universiteta, 113:10 (1953), 57–105 (In Russ.)
[6] G. M. Vaynikko. I. K. Lifanov. L. N. Poltavskiy, Numerical methods in hypersingular integral equations and their applications, Yanus-K Publ., Moscow, 2001, 508 pp. (In Russ.)
[7] I. V. Boykov, “Analytical and numerical methods for solving hypersingular integral equations”, Dinamicheskiye sistemy, 9:3 (2009), 244–272 (In Russ.)
[8] J. Gregor, “O aproximaci obrazu v Hilbertove transformaci ortogonalnimi radami racionalnich lomenych funkci”, Applik. Matem. Ceskoslovenska Academie VED, 6:3 (1961), 214–240 | MR | Zbl
[9] I. V. Boykov, V. A. Roudnev, A. I. Boykova, O. A. Baulina, “New iterative method for solving linear and nonlinear hypersingular integral equations”, Applied Numerical Mathematics, 127 (2018), 280–305 | DOI | MR | Zbl
[10] I. V. Boykov, V. A. Roudnev, A. I. Boykova, “Approximate Methods for Solving Linear and Nonlinear Hypersingular Integral Equations”, Axioms, 9:3 (2020), 1–18 | DOI | MR
[11] I.V̇ Boykov, “On a single continuous Method for solving nonlinear operator equations”, Differentsialnyye uravneniya, 48:9 (2012), 1308-1314 (In Russ.) | MR | Zbl
[12] Yu.L. Daletskiy. M.G. Kreyn, Stability of solutions of differential equations in Banach space, Nauka Publ., Moscow, 1970, 535 pp. (In Russ.)
[13] K. Dekker. Ya. Verver., Stability of Runge-Kutta methods for rigid nonlinear differential equations, Mir Publ, Moscow, 1988, 334 pp. (In Russ.)
[14] R. Peierls, “The size of a dislocations”, Proc. Phys. Soc., 52 (1940), 34-40 | DOI
[15] V. Karlin, V.G. Maz'ya, A.B. Movchan, J.R. Willis, R. Bullough, “Numerical Solution of Nonlinear Hypersingular Integral Equations of the Peierls Type in Dislocation Theory”, SIAM J. Appl. Math, 60:2 (2000), 664–678 | DOI | MR | Zbl
[16] I. V. Boykov, E. S. Ventsel, V. A. Roudnev, A. I. Boykova, “An approximate solution of nonlinear hypersingular integral equations”, Applied Numerical Mathematics, 86 (2014), 1-21 | DOI | MR | Zbl
[17] I. V. Boykov, E. S. Ventsel, A. I. Boykova, “An approximate solution of hypersingular integral equations”, Applied Numerical Mathematics, 60:6 (2010), 607–628 | DOI | MR | Zbl