Modeling of acoustic fields during gas flow around bodies
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 333-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes the modeling of the acoustic field based on the analysis of pressure fluctuations. For this a model based on the laws of mass, energy and momentum is implemented in a two-dimensional setting. For the calculations, the HLLC scheme for solving the Rieman problem and the WENO scheme for reconstructing the gas-dynamic parameters on the faces between the cells are used. To simulate the acoustic field, a time-averaged characteristic was chosen - the overall sound pressure level (OASPL). The paper considers the acoustic field obtained when a gas flows around a single square body, a cascade of square bodies, a step and a cavity, an interpretation of the ongoing processes is given. The result of the study is the visualization and description of the phenomena that arise when a gas flow around bodies, as well as the study of the effect of removing the observation point on acoustic effects within the simulated area.
Keywords: gas dynamics, HLLC, WENO, acoustic field, OASPL.
Mots-clés : acoustic noise
@article{SVMO_2020_22_3_a5,
     author = {A. R. Bagapov and R. V. Zhalnin},
     title = {Modeling of acoustic fields during gas flow around bodies},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {333--351},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a5/}
}
TY  - JOUR
AU  - A. R. Bagapov
AU  - R. V. Zhalnin
TI  - Modeling of acoustic fields during gas flow around bodies
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 333
EP  - 351
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a5/
LA  - ru
ID  - SVMO_2020_22_3_a5
ER  - 
%0 Journal Article
%A A. R. Bagapov
%A R. V. Zhalnin
%T Modeling of acoustic fields during gas flow around bodies
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 333-351
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a5/
%G ru
%F SVMO_2020_22_3_a5
A. R. Bagapov; R. V. Zhalnin. Modeling of acoustic fields during gas flow around bodies. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 333-351. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a5/

[1] A. S. Kozelkov, V. V. Kurulin, S. V. Lashkin, R. M. Shagaliev, A. V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Zh. Vychisl. Mat. Mat. Fiz., 56:8 (2016), 1524–1535 | DOI | MR | Zbl

[2] Comput. Math. Math. Phys., 56:8 (2016), 1506–1516 | DOI | MR | Zbl

[3] A. A. Samarskiy, Yu. P. Popov, Raznostnye metody resheniya zadach gazovoy dinamiki, Nauka, M., 1980, 424 pp.

[4] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorskiy, “Raznostnye skhemy trekhmernoy gazovoy dinamiki dlya zadachi o razvitii neustoychivosti Rikhtmaera-Meshkova”, Matematicheskoe modelirovanie, 7:5 (1995), 15–25 | MR | Zbl

[5] G.-S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of computational physics, 126:1 (1996), 202–228 | DOI | MR | Zbl

[6] E. F.Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 724 pp. | MR | Zbl

[7] R. V. Zhalnin, N. V. Zmitrenko, M. E. Ladonkina, V. F. Tishkin, “Numerical simulation of Richtmyer–Meshkov instability development using the difference schemes of high order of accuracy”, Matematicheskoe modelirovanie, 19:10 (2007), 61–66 | MR | Zbl

[8] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report 97-65, 1997, 84 pp. | MR

[9] V. G. Bobkov, Numerical simulation of a helicopter propeller flow and determination of aeroacoustic characteristics, Ph.D. thesis physical and mathematical sciences, Moscow, 2018, 176 pp.

[10] J. J. Wijker, Spacecraft Structures, Springer-Verlag, Berlin–Heidelberg, 2008, 504 pp.

[11] A. V. Garbaruk, F. R. Spalart, M. Kh. Strelets, M. L. Shur, “Raschet aerodinamiki i shuma pri obtekanii tandema tsilindrov”, Matematicheskoe modelirovanie, 26:6 (2014), 119–136 | Zbl

[12] C. Kato, A. Iida, Y. Tanako, Y. Fujita, M. Ikegava, Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake, AIAA Paper 93–145

[13] J.H. Seo, K.W. Chang, Y.J. Moon, Aerodynamic noise prediction for long-span-bodies, AIAA Paper, 2006–2573

[14] A. D. Savel'ev, “Numerical modeling of acoustic noise of a two-dimensional cavity in a subsonic flow”, Uchenye zapiski TsAGI, 45:1 (2014), 57–74