Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_3_a5, author = {A. R. Bagapov and R. V. Zhalnin}, title = {Modeling of acoustic fields during gas flow around bodies}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {333--351}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a5/} }
TY - JOUR AU - A. R. Bagapov AU - R. V. Zhalnin TI - Modeling of acoustic fields during gas flow around bodies JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 333 EP - 351 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a5/ LA - ru ID - SVMO_2020_22_3_a5 ER -
A. R. Bagapov; R. V. Zhalnin. Modeling of acoustic fields during gas flow around bodies. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 333-351. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a5/
[1] A. S. Kozelkov, V. V. Kurulin, S. V. Lashkin, R. M. Shagaliev, A. V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Zh. Vychisl. Mat. Mat. Fiz., 56:8 (2016), 1524–1535 | DOI | MR | Zbl
[2] Comput. Math. Math. Phys., 56:8 (2016), 1506–1516 | DOI | MR | Zbl
[3] A. A. Samarskiy, Yu. P. Popov, Raznostnye metody resheniya zadach gazovoy dinamiki, Nauka, M., 1980, 424 pp.
[4] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorskiy, “Raznostnye skhemy trekhmernoy gazovoy dinamiki dlya zadachi o razvitii neustoychivosti Rikhtmaera-Meshkova”, Matematicheskoe modelirovanie, 7:5 (1995), 15–25 | MR | Zbl
[5] G.-S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of computational physics, 126:1 (1996), 202–228 | DOI | MR | Zbl
[6] E. F.Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 724 pp. | MR | Zbl
[7] R. V. Zhalnin, N. V. Zmitrenko, M. E. Ladonkina, V. F. Tishkin, “Numerical simulation of Richtmyer–Meshkov instability development using the difference schemes of high order of accuracy”, Matematicheskoe modelirovanie, 19:10 (2007), 61–66 | MR | Zbl
[8] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report 97-65, 1997, 84 pp. | MR
[9] V. G. Bobkov, Numerical simulation of a helicopter propeller flow and determination of aeroacoustic characteristics, Ph.D. thesis physical and mathematical sciences, Moscow, 2018, 176 pp.
[10] J. J. Wijker, Spacecraft Structures, Springer-Verlag, Berlin–Heidelberg, 2008, 504 pp.
[11] A. V. Garbaruk, F. R. Spalart, M. Kh. Strelets, M. L. Shur, “Raschet aerodinamiki i shuma pri obtekanii tandema tsilindrov”, Matematicheskoe modelirovanie, 26:6 (2014), 119–136 | Zbl
[12] C. Kato, A. Iida, Y. Tanako, Y. Fujita, M. Ikegava, Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake, AIAA Paper 93–145
[13] J.H. Seo, K.W. Chang, Y.J. Moon, Aerodynamic noise prediction for long-span-bodies, AIAA Paper, 2006–2573
[14] A. D. Savel'ev, “Numerical modeling of acoustic noise of a two-dimensional cavity in a subsonic flow”, Uchenye zapiski TsAGI, 45:1 (2014), 57–74