A scenario of the homotopy type changing of the invariant saddle manifold closure
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 306-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with surface gradient-like diffeomorphisms. The closures of the invariant manifolds of saddle points of such systems contain nodal points in their closure. In the case when there is only one such point, the closure of the invariant manifold is a closed curve that is homeomorphic to the circle. In a general case the conjugating homeomorphism changes the homotopy type of the closed curve, while the diffeomorphisms themselves may remain in the same isotopic class. This means that in the space of diffeomorphisms two such systems are connected by an arc, but every such arc necessarily undergoes bifurcations. In this paper, we describe a scenario for changing the homotopy type of the closure of the invariant saddle manifold. Moreover, the constructed arc is stable in the space of diffeomorphisms.
Mots-clés : stable arc, bifurcation
Keywords: saddle-node, homotopy type of curve, manifold.
@article{SVMO_2020_22_3_a3,
     author = {E. V. Nozdrinova},
     title = {A scenario of the homotopy type changing of the invariant saddle manifold closure},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {306--318},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a3/}
}
TY  - JOUR
AU  - E. V. Nozdrinova
TI  - A scenario of the homotopy type changing of the invariant saddle manifold closure
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 306
EP  - 318
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a3/
LA  - ru
ID  - SVMO_2020_22_3_a3
ER  - 
%0 Journal Article
%A E. V. Nozdrinova
%T A scenario of the homotopy type changing of the invariant saddle manifold closure
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 306-318
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a3/
%G ru
%F SVMO_2020_22_3_a3
E. V. Nozdrinova. A scenario of the homotopy type changing of the invariant saddle manifold closure. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 306-318. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a3/

[1] V. Grines T. Medvedev, O. Pochinka, Dynamical systems on 2- and 3-manifolds, Springer, Switzerland, 2016, 313 pp. | MR | Zbl

[2] J. Milnor, Morse theory, Mir Publ., Moscow, 1965, 184 pp. | MR

[3] E. Nozdrinova, O. Pochinka, “On the existence of a smooth arc without bifurcations joining source-sink diffeomorphisms on the 2-sphere”, Journal of Physics: Conference Series, 990:1 (2018), 1–7 | MR

[4] D. Rolfsen, “Knots and links”, Bull. Amer. Math. Soc., 83:5 (1977), 931–935 | DOI | MR

[5] S. E. Newhouse, J. Palis, F. Takens, “Bifurcations and stability of families of diffeomorphisms”, Publications Mathematiques de l’I.H.E.S, 57 (1983), 5–71 | MR | Zbl

[6] E. Nozdrinova, O. Pochinka, “Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere”, Discrete and Continuous Dynamical Systems, 2020 | MR

[7] P. Blanchard, “Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of surfaces”, Duke Mathematical Journal, 47:1 (1980), 33–46 | DOI | MR | Zbl

[8] S. Newhouse, M. Peixoto, “There is a simple arc joining any two Morse-Smale fows”, Asterisque, 31 (1976), 15–41 | MR

[9] S. Matsumoto, “There are two isotopic Morse-Smale diffeomorphisms which cannot be joined by simple arcs”, Inventiones Mathematical, 51 (1979), 1–7 | DOI | MR | Zbl

[10] A. Banyaga, “The structure of the group of equivariant diffeomorphism”, Topology, 16 (1977), 279–283 | DOI | MR | Zbl