Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_3_a3, author = {E. V. Nozdrinova}, title = {A scenario of the homotopy type changing of the invariant saddle manifold closure}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {306--318}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a3/} }
TY - JOUR AU - E. V. Nozdrinova TI - A scenario of the homotopy type changing of the invariant saddle manifold closure JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 306 EP - 318 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a3/ LA - ru ID - SVMO_2020_22_3_a3 ER -
E. V. Nozdrinova. A scenario of the homotopy type changing of the invariant saddle manifold closure. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 306-318. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a3/
[1] V. Grines T. Medvedev, O. Pochinka, Dynamical systems on 2- and 3-manifolds, Springer, Switzerland, 2016, 313 pp. | MR | Zbl
[2] J. Milnor, Morse theory, Mir Publ., Moscow, 1965, 184 pp. | MR
[3] E. Nozdrinova, O. Pochinka, “On the existence of a smooth arc without bifurcations joining source-sink diffeomorphisms on the 2-sphere”, Journal of Physics: Conference Series, 990:1 (2018), 1–7 | MR
[4] D. Rolfsen, “Knots and links”, Bull. Amer. Math. Soc., 83:5 (1977), 931–935 | DOI | MR
[5] S. E. Newhouse, J. Palis, F. Takens, “Bifurcations and stability of families of diffeomorphisms”, Publications Mathematiques de l’I.H.E.S, 57 (1983), 5–71 | MR | Zbl
[6] E. Nozdrinova, O. Pochinka, “Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere”, Discrete and Continuous Dynamical Systems, 2020 | MR
[7] P. Blanchard, “Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of surfaces”, Duke Mathematical Journal, 47:1 (1980), 33–46 | DOI | MR | Zbl
[8] S. Newhouse, M. Peixoto, “There is a simple arc joining any two Morse-Smale fows”, Asterisque, 31 (1976), 15–41 | MR
[9] S. Matsumoto, “There are two isotopic Morse-Smale diffeomorphisms which cannot be joined by simple arcs”, Inventiones Mathematical, 51 (1979), 1–7 | DOI | MR | Zbl
[10] A. Banyaga, “The structure of the group of equivariant diffeomorphism”, Topology, 16 (1977), 279–283 | DOI | MR | Zbl