Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_3_a2, author = {S. I. Mitrokhin}, title = {On the asymptotic behavior of the spectrum of a~sixth-order differential operator, whose potential is~the~delta function}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {280--305}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a2/} }
TY - JOUR AU - S. I. Mitrokhin TI - On the asymptotic behavior of the spectrum of a~sixth-order differential operator, whose potential is~the~delta function JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 280 EP - 305 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a2/ LA - ru ID - SVMO_2020_22_3_a2 ER -
%0 Journal Article %A S. I. Mitrokhin %T On the asymptotic behavior of the spectrum of a~sixth-order differential operator, whose potential is~the~delta function %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 280-305 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a2/ %G ru %F SVMO_2020_22_3_a2
S. I. Mitrokhin. On the asymptotic behavior of the spectrum of a~sixth-order differential operator, whose potential is~the~delta function. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 280-305. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a2/
[1] F. A. Berezin, L. D. Faddeev, “Remarks on the Schrodinger equation with a singular potential”, Doklady Akademii nauk SSSR, 137:5 (1961), 1011–1014 (In Russ.) | MR | Zbl
[2] O. Z. Peng, X. Wang, J. Y. Zeng, “Analytic solution to the Schrodinger equation with a harmonic oscillator potential plus $\delta$-potential”, Sci. China, Ser. A., 34:10 (1991), 1215–1221 | MR | Zbl
[3] S. Fassari, G. Inglese, “On the spectrum of the harmonic oscillator with a $\delta$-type pertubation”, Helv. Phys. Acta., 67:6 (1994), 650–659 | MR | Zbl
[4] S. Fassari, G. Inglese, “On the spectrum of the harmonic oscillator with a $\delta$-type pertubation”, Annales Henri Poincare, 70:6 (1997), 858–865 | MR | Zbl
[5] V. D. Krevchik, R. V. Zaitsev, “Impurity absorption of light in structures with quantum dots”, Physics of the Solid State, 43:3 (2001), 504–507 (In Russ.) | DOI
[6] V. A. Il’in, “Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a differential operator”, Mathematical Notes of the Academy of Sciences of the USSR, 22:5 (1977), 670–872
[7] S. I. Mitrokhin, “Regularized trace formulas for second-order differential operators with discontinuous coefficients”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 22:6 (1986), 3–6 (In Russ.) | MR
[8] S. I. Mitrokhin, “On trace formulas for a boundary value problem with a functional differential equation with a discontinuous coefficient”, Differential Equations, 22:6 (1986), 927–931 (In Russ.) | MR | Zbl
[9] V. A. Il’in, “Necessary and sufficient conditions for being a Riesz basis of root vectors of second-order discontinuous operators”, Differential Equations, 22:12 (1986), 2059–2071 (In Russ.) | MR | MR | Zbl
[10] S. I. Mitrokhin, “On some spectral properties of second-order differential operators with discontinuous weight function”, Doklady Akademii nauk, 356:1 (1997), 13–15 (In Russ.) | MR | Zbl
[11] V. A. Vinokurov, V. A. Sadovnichy, “Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm-Liouville boundary-value problem on a segment with a summable potential”, Izvestiya: Mathematics, 64:4 (2000), 695–754 | MR | Zbl
[12] S. I. Mitrokhin, “Spectral properties of a fourth-order differential operator with integrable coefficients”, Proceedings of the Steklov Institute of Mathematics, 270 (2010), 184–193 | MR | Zbl
[13] S. I. Mitrokhin, “Spectral properties of boundary value problems for a functional differential equation with summable coefficients”, Differential Equations, 46:8 (2010), 1085–1093 (In Russ.) | DOI | MR | Zbl
[14] S. I. Mitrokhin, “Spectral properties of even-order differential operators with summable coefficients”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 17:4, 3–15 (In Russ.) | MR
[15] S. I. Mitrokhin, “Asymptotics of the spectrum of a periodic boundary value problem for a differential operator with a summable potential”, Trudy instituta matematiki i mekhaniki URO RAN, 25:1 (2019), 136–149 (In Russ.) | DOI | MR
[16] A. M. Savchuk, A. A. Shkalikov, “Sturm-Liouville operators with singular potentials”, Mathematical Notes, 66:6 (1999), 741–753 | Zbl
[17] A. M. Savchuk, “First-order regularised trace of the Sturm-Liouville operator with $\delta$-potential”, Russian Mathematical Surveys, 55:6 (2000), 1168–1169 | MR | Zbl
[18] V. A. Vinokurov, V. A. Sadovnichy, “The asymptotics of eigenvalues and eigenfunctions and a trace formula for a potential with delta functions”, Differential Equations, 38:6 (2002), 772–789 | MR | Zbl
[19] A. M. Savchuk, A. A. Shkalikov, “Trace formula for Sturm-Liouville Operators with singular potentials”, Mathematical Notes, 69:3 (2001), 387–400 | MR | Zbl
[20] V. A. Geiler, V. A. Margulis, I. I. Chuchaev, “Potentials of zero radius and Carleman operators”, Siberian Mathematical Journal, 36:4 (1995), 714–726 | DOI | MR
[21] D. I. Borisov, “Gaps in the spectrum of the Laplacian in a strip with periodic delta interaction”, Proceedings of the Steklov Institute of Mathematics (Supplementary Issues), 305:suppl. 1 (2019), S16–S23
[22] M. A. Naimark, Linear differential operators, Nauka Publ., Moscow, 1969, 528 pp. (In Russ.) | MR | Zbl
[23] S. I. Mitrokhin, “Asymptotics of eigenvalues of differential operator with alternating weight function”, Russian Mathematics, 62:6 (2018), 27–42 | MR | Zbl
[24] R. Bellman, K. L. Cook, Differential-difference equations, Academic Press, London, 1963, 462 pp.
[25] V. A. Sadovnichyi, V. B. Lyubishkin, “On some new results in the theory of regularized traces of differential operators”, Differential Equations, 18:1 (1982), 109–116 (In Russ.) | MR