Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_3_a1, author = {E. A. Lizina}, title = {Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {268--279}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a1/} }
TY - JOUR AU - E. A. Lizina TI - Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 268 EP - 279 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a1/ LA - ru ID - SVMO_2020_22_3_a1 ER -
%0 Journal Article %A E. A. Lizina %T Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 268-279 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a1/ %G ru %F SVMO_2020_22_3_a1
E. A. Lizina. Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 268-279. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a1/
[1] K. Y. Polyakov, “Digital stabilization of continuous objects with multiple delays”, Izv. RAN. Teoriya i sistemy upravleniya, 1 (2006), 30–37 (In Russ.) | Zbl
[2] R I. Kozlov, O. R. Kozlova, “Investigation of the stability of nonlinear continuous-discrete models of economic dynamics by the VFL method I”, Izv. RAN. Teoriya i sistemy upravleniya, 2 (2009), 104–113 (In Russ.) | MR | Zbl
[3] R I. Kozlov, O. R. Kozlova, “Investigation of the stability of nonlinear continuous-discrete models of economic dynamics by the VFL method II”, Izv. RAN. Teoriya i sistemy upravleniya, 3 (2009), 41–50 (In Russ.) | MR | Zbl
[4] B. Kuo, Teoriya i priektirovanie cifrovyh sistem upravleniya, Mashinostroeniye, M., 1986, 446 pp. (In Russ.)
[5] E. N. Rozenvasser, Lineynaya teoriya cifrovogo upravleniya v nepreryvnom vremeni, Nauka, M., 1994, 461 pp. (In Russ.)
[6] A. Yu. Alexandrov, “Investigation of the stability of solutions of one class of complex systems”, Vestn. S.-Peterburgskogo un-ta. – Ser. 10. Prikl. matem. inform. proc. upr., 4 (2011), 3–13 (In Russ.)
[7] M. V. Meerov, A. V. Ahmetzyanov, Ya. M. Berschanskiy, V. N. Kulibanov, Mnogosvyaznye sistemy upravleniya [Multiply connected control systems], Nauka, 1990, 264 pp. (In Russ.) | MR | Zbl
[8] S. L. Zenkevich, A. S. Yuschenko i dr., Osnovy upravleniya manipulyatcionnymi robotami: Uchebnik dlya vuzov - 2-e izd, isprav. i dop. [Fundamentals of manipulation robots control: Textbook for universities. - 2nd ed., Revised. and add.], Izd-vo MGTU im. N. E. Baumana, 2004, 480 pp. (In Russ.)
[9] A. A. Voronov., Vvedenie v dinamiku slojnyh upravlyaemyh sistem, Nauka, M., 1985, 352 pp. (In Russ.)
[10] V. I. Vorotnikov, Ustoychivost dinamicheskih sistem po otnosheniyu k chasti peremennyh, Nauka, M., 1992, 288 pp. (In Russ.)
[11] A. G. Maltcev, Osnovy lineynoy algebry, Nauka, M., 1970, 400 pp. (In Russ.) | MR
[12] V. I. Zubov., Lekcii po teorii upravleniya, Nauka, M., 1975, 496 pp. (In Russ.)
[13] E. A. Lizina, V. N. Schennikov, “Two-level stabilization of a multiply connected hybrid dynamical system with non-overlapping decompositions”, Sistemy upravleniya i informacionnye tehnologii, 2 (44) (2011), 30–34 (In Russ.)
[14] A. A. Voronov, V. M. Matrosov i dr., Metod vektornyh funktciy Lyapunova v teorii ustoychivosti, Nauka, M., 1987, 312 pp. (In Russ.) | MR
[15] N. N. Krasovskiy, nekotorye zadachi teorii ustoychivosti dvijeniya, Phizmatlit, M., 1959, 222 pp. (In Russ.)