Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 268-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers a multi-connected controllable system with non-overlapping decompositions. Given that most of the control laws are implemented on digital controllers, the control of the system is implemented as a piecewise-constant function. Multiconnectivity of the system, in turn, makes it impossible to use centralized control. Every isolated subsystem must work stably, and intersystem connections can have a destabilizing effect. In this case, piecewise-constant control is constructed as two-level, i.e. in the form of a sum of local and global control. Local control stabilizes the equilibrium positions of individual linear subsystems. Global control acts on intersystem connections. Conditions are obtained under which local control stabilizes linear subsystems, and the equilibrium position of the original multi-connected system is asymptotically stable in part of variables.
Keywords: multivariable dynamic system, piecewize-constant control, two-level control, asymptotic stability in part of variables, stabilization.
@article{SVMO_2020_22_3_a1,
     author = {E. A. Lizina},
     title = {Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {268--279},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a1/}
}
TY  - JOUR
AU  - E. A. Lizina
TI  - Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 268
EP  - 279
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a1/
LA  - ru
ID  - SVMO_2020_22_3_a1
ER  - 
%0 Journal Article
%A E. A. Lizina
%T Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 268-279
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a1/
%G ru
%F SVMO_2020_22_3_a1
E. A. Lizina. Stabilization of a multiconnected controlled continuous discrete system with non-overlapped decompositions with respect to part of variables. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 268-279. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a1/

[1] K. Y. Polyakov, “Digital stabilization of continuous objects with multiple delays”, Izv. RAN. Teoriya i sistemy upravleniya, 1 (2006), 30–37 (In Russ.) | Zbl

[2] R I. Kozlov, O. R. Kozlova, “Investigation of the stability of nonlinear continuous-discrete models of economic dynamics by the VFL method I”, Izv. RAN. Teoriya i sistemy upravleniya, 2 (2009), 104–113 (In Russ.) | MR | Zbl

[3] R I. Kozlov, O. R. Kozlova, “Investigation of the stability of nonlinear continuous-discrete models of economic dynamics by the VFL method II”, Izv. RAN. Teoriya i sistemy upravleniya, 3 (2009), 41–50 (In Russ.) | MR | Zbl

[4] B. Kuo, Teoriya i priektirovanie cifrovyh sistem upravleniya, Mashinostroeniye, M., 1986, 446 pp. (In Russ.)

[5] E. N. Rozenvasser, Lineynaya teoriya cifrovogo upravleniya v nepreryvnom vremeni, Nauka, M., 1994, 461 pp. (In Russ.)

[6] A. Yu. Alexandrov, “Investigation of the stability of solutions of one class of complex systems”, Vestn. S.-Peterburgskogo un-ta. – Ser. 10. Prikl. matem. inform. proc. upr., 4 (2011), 3–13 (In Russ.)

[7] M. V. Meerov, A. V. Ahmetzyanov, Ya. M. Berschanskiy, V. N. Kulibanov, Mnogosvyaznye sistemy upravleniya [Multiply connected control systems], Nauka, 1990, 264 pp. (In Russ.) | MR | Zbl

[8] S. L. Zenkevich, A. S. Yuschenko i dr., Osnovy upravleniya manipulyatcionnymi robotami: Uchebnik dlya vuzov - 2-e izd, isprav. i dop. [Fundamentals of manipulation robots control: Textbook for universities. - 2nd ed., Revised. and add.], Izd-vo MGTU im. N. E. Baumana, 2004, 480 pp. (In Russ.)

[9] A. A. Voronov., Vvedenie v dinamiku slojnyh upravlyaemyh sistem, Nauka, M., 1985, 352 pp. (In Russ.)

[10] V. I. Vorotnikov, Ustoychivost dinamicheskih sistem po otnosheniyu k chasti peremennyh, Nauka, M., 1992, 288 pp. (In Russ.)

[11] A. G. Maltcev, Osnovy lineynoy algebry, Nauka, M., 1970, 400 pp. (In Russ.) | MR

[12] V. I. Zubov., Lekcii po teorii upravleniya, Nauka, M., 1975, 496 pp. (In Russ.)

[13] E. A. Lizina, V. N. Schennikov, “Two-level stabilization of a multiply connected hybrid dynamical system with non-overlapping decompositions”, Sistemy upravleniya i informacionnye tehnologii, 2 (44) (2011), 30–34 (In Russ.)

[14] A. A. Voronov, V. M. Matrosov i dr., Metod vektornyh funktciy Lyapunova v teorii ustoychivosti, Nauka, M., 1987, 312 pp. (In Russ.) | MR

[15] N. N. Krasovskiy, nekotorye zadachi teorii ustoychivosti dvijeniya, Phizmatlit, M., 1959, 222 pp. (In Russ.)