On a class of topological conjugacy with a homothety
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 261-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class $H(\mathbb{R}^n)$ of orientation-preserving homeomorphisms of Euclidean space $\mathbb{R}^n$ such that for any homeomorphism $h\in H(\mathbb{R}^n)$ and for any point $x\in \mathbb{R}^n$ a condition $\lim \limits_{n\to +\infty}h^n(x)\to O$ holds, were $O$ is the origin. It is proved that for any $n\geq 1$ an arbitrary homeomorphism $h\in H(\mathbb{R}^n)$ is topologically conjugated with the homothety $a_n: \mathbb{R}^n\to \mathbb{R}^n$, given by $a_n(x_1,\dots,a_n)=(\dfrac12 x_1,\dots,\dfrac12 x_n)$. For a smooth case under the condition that all eigenvalues of the differential of the mapping $h$ have absolute values smaller than one, this fact follows from the classical theory of dynamical systems. In the topological case for $n\notin \{4,5\}$ this fact is proven in several works of 20th century, but authors do not know any papers where it would be proven for $n\in \{4,5\}$. This paper fills this gap.
Keywords: topological classification of homeomorphisms, topological conjugacy with dilatation, factor-space, homothety.
@article{SVMO_2020_22_3_a0,
     author = {E. Ya. Gurevich and A. A. Makarov},
     title = {On a class of topological conjugacy with a homothety},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {261--267},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a0/}
}
TY  - JOUR
AU  - E. Ya. Gurevich
AU  - A. A. Makarov
TI  - On a class of topological conjugacy with a homothety
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 261
EP  - 267
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a0/
LA  - ru
ID  - SVMO_2020_22_3_a0
ER  - 
%0 Journal Article
%A E. Ya. Gurevich
%A A. A. Makarov
%T On a class of topological conjugacy with a homothety
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 261-267
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a0/
%G ru
%F SVMO_2020_22_3_a0
E. Ya. Gurevich; A. A. Makarov. On a class of topological conjugacy with a homothety. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 261-267. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a0/

[1] B. Kerekjarto, “Topologische charakterisierung der linearen abbildungen”, Acta Scientiarum Mathematicarum, 6:4-4 (1934), 235–262

[2] T. Homma, S. Kinoshita, “On a topological characterization of the dilatation in $E^3$”, Osaka Math. J., 6:1 (1954), 135–143 | MR | Zbl

[3] L. S. Husch, “A Topological characterization of the dilation in $E^n$”, Proceedings of the American Mathematical Society, 28:1 (1971), 234–236 | MR | Zbl

[4] J. Palis, W. Melo, Geometric theory of dynamical systems. An introduction, Springer., New York, 1982, 198. pp. | MR | Zbl

[5] Cz. Kosniowski, A first course in algebraic topology, Cambridge University Press, New York, 1980, 269 pp. | MR | Zbl

[6] B. Jahren, S. Kwasik, “Free involutions on $S^1 \times S^n$”, Math. Ann., 351:2 (2011), 281–303 | DOI | MR | Zbl

[7] Y. Tao, “On fixed point free involutions of $S^1 \times S^2$”, Osaka Math. J., 14:1 (1962), 145–152 | MR | Zbl