Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_3_a0, author = {E. Ya. Gurevich and A. A. Makarov}, title = {On a class of topological conjugacy with a homothety}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {261--267}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a0/} }
TY - JOUR AU - E. Ya. Gurevich AU - A. A. Makarov TI - On a class of topological conjugacy with a homothety JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 261 EP - 267 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a0/ LA - ru ID - SVMO_2020_22_3_a0 ER -
E. Ya. Gurevich; A. A. Makarov. On a class of topological conjugacy with a homothety. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 3, pp. 261-267. http://geodesic.mathdoc.fr/item/SVMO_2020_22_3_a0/
[1] B. Kerekjarto, “Topologische charakterisierung der linearen abbildungen”, Acta Scientiarum Mathematicarum, 6:4-4 (1934), 235–262
[2] T. Homma, S. Kinoshita, “On a topological characterization of the dilatation in $E^3$”, Osaka Math. J., 6:1 (1954), 135–143 | MR | Zbl
[3] L. S. Husch, “A Topological characterization of the dilation in $E^n$”, Proceedings of the American Mathematical Society, 28:1 (1971), 234–236 | MR | Zbl
[4] J. Palis, W. Melo, Geometric theory of dynamical systems. An introduction, Springer., New York, 1982, 198. pp. | MR | Zbl
[5] Cz. Kosniowski, A first course in algebraic topology, Cambridge University Press, New York, 1980, 269 pp. | MR | Zbl
[6] B. Jahren, S. Kwasik, “Free involutions on $S^1 \times S^n$”, Math. Ann., 351:2 (2011), 281–303 | DOI | MR | Zbl
[7] Y. Tao, “On fixed point free involutions of $S^1 \times S^2$”, Osaka Math. J., 14:1 (1962), 145–152 | MR | Zbl