Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_2_a6, author = {M. S. Deryabina and S. I. Martynov}, title = {Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {208--224}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a6/} }
TY - JOUR AU - M. S. Deryabina AU - S. I. Martynov TI - Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 208 EP - 224 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a6/ LA - ru ID - SVMO_2020_22_2_a6 ER -
%0 Journal Article %A M. S. Deryabina %A S. I. Martynov %T Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 208-224 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a6/ %G ru %F SVMO_2020_22_2_a6
M. S. Deryabina; S. I. Martynov. Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 208-224. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a6/
[1] J. Fourier, Theorie analytique de la chaleur, Firmin Didot Pere et Fils, Paris, 1822, 676 pp. (In English) | MR
[2] A. Fick, Die medizinische Physik, F. Vieweg, Paris, 1856, 537 pp. (In English)
[3] H. Darcy, Les fontaines publiques de la ville de Dijon: exposition et appli-cation des principes a suivre et des formules a employer dans les questions de distribution d'eau...., V. Dalmont, Paris, 1856, VII 647 pp. (In English)
[4] Y. Zaretskiy, S. Geiger, K. Sorbie S.M. Underwood, P. Bartlett and R.H. Ottewill, “Direct numerical simulation of porescale reactive transport: applications to wettability alteration during two-phase flow”, Int. Journal of Oil, Gas and Coal Technology, 5:2/3 (2012), 142–146 (In English) | DOI
[5] J. Ma, J. P. Sanchez, K. Wu, G. D. Couples, Z. Jiang, “A pore network model for simulating nonideal gas flow in micro- and nano-porous materials”, Fuel, 116 (2014), 498–508 (In English) | DOI
[6] S. Molins, “Reactive interfaces in direct numerical simulation of pore-scale processes”, Reviews in Mineralogy Geochemistry, 80 (2015), 461-481 (In English) | DOI
[7] A. A. El-Zehairy, M. Nezhad, V. Joekar-Niasar, I. Guymer, N. Kourra, M. A. Williams, “Pore-network modelling of non-Darcy flow through heterogeneous porous media”, Advances in Water Resources, 131 (2019), 10337881-94 (In English) | DOI
[8] W. G. Gray, C. T. Miller, Introduction to the thermodynamically constrained averaging theory for porous medium systems., Springer, Switzerland, 2014, 582 pp. (In English)
[9] R. G. Hughes, M. J. Blunt, “Network modeling of multiphase flow in fractures”, Advances in Water Resources, 24 (2001), 409–421 (In English) | DOI
[10] Z. Jiang, R. van Dijke, K. Wu, G. D. Couples, K. S. Sorbie, J. Ma, “Stochastic pore network generation from 3D rock images”, Transport in Porous Media, 94:2 (2012), 571–593 (In English) | DOI
[11] T. Mukunoki, Y. Miyata, K. Mikami, E. Shiota, “E. X-ray CT analysis of pore structure in sand”, Solid Earth., 7 (2016), 929–942 (In English) | DOI
[12] Q. Xiong, T. G. Baychev, A. P. Jivkov, “Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport”, Journal of Contaminant Hydrology, 192 (2016), 101–117 (In English) | DOI | MR
[13] A. Q. Raeini, B. Bijeljic, M. Blunt, “Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media”, Phys. Rev. E., 96 (2017), 013312 (In English) | DOI
[14] B. Gharedaghloo, J. S. Price, F. Rezanezhad, W. L. Quinton, “Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography”, Journal of Hydrology, 561 (2018), 494–-508 (In English) | DOI
[15] Z. A. Khan, T. Tranter, M. Agnaou, A. Elkamel, J. Gostick, “Dual network extraction algorithm to investigate multiple transport processes in porous materials: Image-based modeling of pore and grain scale processes”, Computers Chemical Engineering, 123 (2019), 64–77 (In English) | DOI
[16] Y. Wang, Q. Teng, X. He, J. Feng, T. Zhanget, “CT-image of rock samples super resolution using 3D convolutional neural network”, Computers Geosciences, 133 (2019), 104314 (In English) | DOI
[17] K. Weishaupt, V. Joekar-Niasar, R. Helmig, “An efficient coupling of free flow and porous media flow using the pore-network modeling approach”, Journal of Computational Physics: X., 1 (2019), 100011 (In English) | DOI | MR
[18] M. S. Deryabina, S. I. Martynov, “Simulation of the flow of a viscous fluid with particles through porous medium cells”, Computational Continuum Mechanics, 9:4 (2016), 420–429
[19] V. E. Baranov, S. I. Martynov, “Simulation of Particle Dynamics in a Viscous Fluid near a Plane Wall”, Computational Mathematics and Mathematical Physics, 50:9 (2010), 1588-–1604 | DOI | MR | Zbl
[20] M. S. Deryabina, S. I. Martynov, “The flow of a viscous fluid with a predetermined pressure gradient through periodic structures”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 21:2 (2019), 222–243 | MR