Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 208-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simulation of the flow of a viscous fluid with a given pressure gradient through a porous structure, which was represented as a system of fixed particles, was carried out. Inside the porous structure there are moving particles, which are markers of microflows in the cells. The viscous fluid flows along a flat wall bounding the porous structure on one side. The calculations take into account the hydrodynamic interaction of all particles, both moving and stationary between themselves and with the plane. Computer simulations of this kind of flows through model structures formed, respectively, of 441, 567 periodically and 478 randomly located motionless particles of effective size and different positions of the flat wall, were carried out. The size of the moving particles placed in a viscous liquid was 0.2 of the size of the effective particles. The results of numerical simulation showed that microflows with an opposite direction of velocity are realized inside the structure, which follows from Darcy's law. Such a complex dynamics of the flow inside the porous structure means that the use of averaged equations of fluid filtration gives an incorrect picture of the flow at the pore size and can serve as an explanation of the nonlinear dependence of the average filtration rate on the applied pressure gradient.
Keywords: numerical simulation, porous structure, microflows.
Mots-clés : viscous fluid, hydrodynamic interaction of particles
@article{SVMO_2020_22_2_a6,
     author = {M. S. Deryabina and S. I. Martynov},
     title = {Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {208--224},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a6/}
}
TY  - JOUR
AU  - M. S. Deryabina
AU  - S. I. Martynov
TI  - Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 208
EP  - 224
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a6/
LA  - ru
ID  - SVMO_2020_22_2_a6
ER  - 
%0 Journal Article
%A M. S. Deryabina
%A S. I. Martynov
%T Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 208-224
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a6/
%G ru
%F SVMO_2020_22_2_a6
M. S. Deryabina; S. I. Martynov. Viscous fluid microflows in cells of a porous medium in the presence of a gradient pressure. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 208-224. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a6/

[1] J. Fourier, Theorie analytique de la chaleur, Firmin Didot Pere et Fils, Paris, 1822, 676 pp. (In English) | MR

[2] A. Fick, Die medizinische Physik, F. Vieweg, Paris, 1856, 537 pp. (In English)

[3] H. Darcy, Les fontaines publiques de la ville de Dijon: exposition et appli-cation des principes a suivre et des formules a employer dans les questions de distribution d'eau...., V. Dalmont, Paris, 1856, VII 647 pp. (In English)

[4] Y. Zaretskiy, S. Geiger, K. Sorbie S.M. Underwood, P. Bartlett and R.H. Ottewill, “Direct numerical simulation of porescale reactive transport: applications to wettability alteration during two-phase flow”, Int. Journal of Oil, Gas and Coal Technology, 5:2/3 (2012), 142–146 (In English) | DOI

[5] J. Ma, J. P. Sanchez, K. Wu, G. D. Couples, Z. Jiang, “A pore network model for simulating nonideal gas flow in micro- and nano-porous materials”, Fuel, 116 (2014), 498–508 (In English) | DOI

[6] S. Molins, “Reactive interfaces in direct numerical simulation of pore-scale processes”, Reviews in Mineralogy Geochemistry, 80 (2015), 461-481 (In English) | DOI

[7] A. A. El-Zehairy, M. Nezhad, V. Joekar-Niasar, I. Guymer, N. Kourra, M. A. Williams, “Pore-network modelling of non-Darcy flow through heterogeneous porous media”, Advances in Water Resources, 131 (2019), 10337881-94 (In English) | DOI

[8] W. G. Gray, C. T. Miller, Introduction to the thermodynamically constrained averaging theory for porous medium systems., Springer, Switzerland, 2014, 582 pp. (In English)

[9] R. G. Hughes, M. J. Blunt, “Network modeling of multiphase flow in fractures”, Advances in Water Resources, 24 (2001), 409–421 (In English) | DOI

[10] Z. Jiang, R. van Dijke, K. Wu, G. D. Couples, K. S. Sorbie, J. Ma, “Stochastic pore network generation from 3D rock images”, Transport in Porous Media, 94:2 (2012), 571–593 (In English) | DOI

[11] T. Mukunoki, Y. Miyata, K. Mikami, E. Shiota, “E. X-ray CT analysis of pore structure in sand”, Solid Earth., 7 (2016), 929–942 (In English) | DOI

[12] Q. Xiong, T. G. Baychev, A. P. Jivkov, “Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport”, Journal of Contaminant Hydrology, 192 (2016), 101–117 (In English) | DOI | MR

[13] A. Q. Raeini, B. Bijeljic, M. Blunt, “Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media”, Phys. Rev. E., 96 (2017), 013312 (In English) | DOI

[14] B. Gharedaghloo, J. S. Price, F. Rezanezhad, W. L. Quinton, “Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography”, Journal of Hydrology, 561 (2018), 494–-508 (In English) | DOI

[15] Z. A. Khan, T. Tranter, M. Agnaou, A. Elkamel, J. Gostick, “Dual network extraction algorithm to investigate multiple transport processes in porous materials: Image-based modeling of pore and grain scale processes”, Computers Chemical Engineering, 123 (2019), 64–77 (In English) | DOI

[16] Y. Wang, Q. Teng, X. He, J. Feng, T. Zhanget, “CT-image of rock samples super resolution using 3D convolutional neural network”, Computers Geosciences, 133 (2019), 104314 (In English) | DOI

[17] K. Weishaupt, V. Joekar-Niasar, R. Helmig, “An efficient coupling of free flow and porous media flow using the pore-network modeling approach”, Journal of Computational Physics: X., 1 (2019), 100011 (In English) | DOI | MR

[18] M. S. Deryabina, S. I. Martynov, “Simulation of the flow of a viscous fluid with particles through porous medium cells”, Computational Continuum Mechanics, 9:4 (2016), 420–429

[19] V. E. Baranov, S. I. Martynov, “Simulation of Particle Dynamics in a Viscous Fluid near a Plane Wall”, Computational Mathematics and Mathematical Physics, 50:9 (2010), 1588-–1604 | DOI | MR | Zbl

[20] M. S. Deryabina, S. I. Martynov, “The flow of a viscous fluid with a predetermined pressure gradient through periodic structures”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 21:2 (2019), 222–243 | MR