Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_1_a6, author = {R. V. Zhalnin and N. A. Kuzmin and V. F. Masyagin}, title = {Development of a parallel algorithm based on an implicit scheme for the discontinuous {Galerkin} method for solving diffusion type equations}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {94--106}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a6/} }
TY - JOUR AU - R. V. Zhalnin AU - N. A. Kuzmin AU - V. F. Masyagin TI - Development of a parallel algorithm based on an implicit scheme for the discontinuous Galerkin method for solving diffusion type equations JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 94 EP - 106 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a6/ LA - ru ID - SVMO_2020_22_1_a6 ER -
%0 Journal Article %A R. V. Zhalnin %A N. A. Kuzmin %A V. F. Masyagin %T Development of a parallel algorithm based on an implicit scheme for the discontinuous Galerkin method for solving diffusion type equations %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 94-106 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a6/ %G ru %F SVMO_2020_22_1_a6
R. V. Zhalnin; N. A. Kuzmin; V. F. Masyagin. Development of a parallel algorithm based on an implicit scheme for the discontinuous Galerkin method for solving diffusion type equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 94-106. http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a6/
[1] M. E. Ladonkina, O. Yu. Milyukova, V. F. Tishkin, “Numerical algorithm for solving diffusion-type equations on the basis of multigrid methods”, Comput. Math. Math. Phys., 50:8 (2010), 1367–-1390 (In Russ.) | MR | Zbl
[2] M. M. Krasnov, P. A. Kuchugov, M. E. Ladonkina, V. F. Tishkin, “Discontinuous Galerkin method on three-dimensional tetrahedral grids: Using the operator programming method”, Math. Models Comput. Simul., 9:5 (2017), 529–543 | DOI | MR | Zbl
[3] P. B. Bogdanov, A. V. Gorobets, S. A. Sukov, “Adaptation and optimization of basic operations for an unstructured mesh CFD algorithm for computation on massively parallel accelerators”, Comput. Math. Math. Phys., 53:8 (2013), 1183–1194 (In Russ.) | DOI | DOI | MR | Zbl
[4] J. Brannick, Y. Chen, X. Hu, L. Zikatanov, “Parallel unsmoothed aggregation algebraic multigrid algorithms on GPUs, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications”, Springer Proc. Math. Stat., 45 (2013), 81–102 (In English) | MR | Zbl
[5] H. De Sterck, U. M. Yang, J. Heys, “Reducing complexity in parallel algebraic multigrid preconditioners”, SIAM Journal on Matrix Analysis and Applications, 27:4 (2006), 1019–1039 (In English) | DOI | MR | Zbl
[6] R. Barett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM., Philadelphia, PA., 1993, 117 pp. (In English)
[7] Y. Saad, “A flexible inner-outer preconditioned GMRES algorithm”, SIAM J. Sci. Comput, 14:2 (1993), 461–469 (In English) | DOI | MR | Zbl
[8] V. Simoncini, D. B. Szyld, “Flexible inner-outer Krylov subspace methods”, SIAM J. Numer. Anal., 40:6 (2003), 2219–2239 (In English) | DOI | MR | Zbl
[9] M. Naumov, M. Arsaev, J. Cohen, P. Castonguay, J. Eaton, J. Demouth, S. Layton, N. Markovskiy, I. Z. Reguly, N. Sakharnykh, V. Sellappan, R. Strzodka, “AmgX: A Library for GPU Accelerated Algebraic Multigrid and Preconditioned Iterative Methods”, SIAM J. Sci. Comput., 37:5 (2015), 602–626 (In English) | DOI | MR
[10] J. Gao, K. Wu, Y. Wang, P. Qi, G. He, “GPU-accelerated preconditioned GMRES method for two-dimensional Maxwell's equations”, International Journal of Computer Mathematics, 94:10 (2017), 1–24 | DOI | MR
[11] R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, “Discontinuous finite-element Galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 9:3 (2016), 144–151 (In Russ.) | Zbl
[12] C. Fletcher, Computational Galerkin methods, Mir, Moscow, 1988, 352 pp. (In Russ.)
[13] F. A. Bassi, S. Rebay, “High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier – Stokes Equations”, Journal of Computational Physics, 131:2 (1997), 267–279 (In English) | DOI | MR | Zbl
[14] B. Cockburn, C.-W. Shu, “The local discontinuous Galerkin method for timedependent convection-diffusion systems”, SIAM J. Numer. Anal., 35:6 (1998), 2440–2463 (In English) | DOI | MR | Zbl
[15] H. Wang, C.-W. Shu, Q. Zhang, “Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems”, ESAIM Mathematical Modelling and Numerical Analysis, 50:4 (2016), 1083–1105 (In English) | DOI | MR | Zbl