Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_1_a2, author = {D. S. Malyshev}, title = {A complete classification of the complexity of the vertex 3-colourability problem for quadruples of induced 5-vertex prohibitions}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {38--47}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a2/} }
TY - JOUR AU - D. S. Malyshev TI - A complete classification of the complexity of the vertex 3-colourability problem for quadruples of induced 5-vertex prohibitions JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 38 EP - 47 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a2/ LA - ru ID - SVMO_2020_22_1_a2 ER -
%0 Journal Article %A D. S. Malyshev %T A complete classification of the complexity of the vertex 3-colourability problem for quadruples of induced 5-vertex prohibitions %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 38-47 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a2/ %G ru %F SVMO_2020_22_1_a2
D. S. Malyshev. A complete classification of the complexity of the vertex 3-colourability problem for quadruples of induced 5-vertex prohibitions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a2/
[1] M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W. H. Freeman and Co. New York, NY, USA, 1979, 338 pp. (In English) | MR | Zbl
[2] H. J. Broersma, P. A. Golovach, D. Paulusma, J. Song, “Updating the complexity status of coloring graphs without a fixed induced linear forest”, Theoretical Computer Science, 414:1 (2012), 9–19 (In English) | DOI | MR | Zbl
[3] P. A. Golovach, D. Paulusma, J. Song, “4-coloring $H$-free graphs when $H$ is small”, Discrete Applied Mathematics, 161:1–2 (2013), 140–150 (In English) | DOI | MR | Zbl
[4] C. Hoàng, M. Kamiński, V. V. Lozin, J. Sawada, X. Shu, “$k$-colorability of $P_5$-free graphs in polynomial time”, Algorithmica, 57:1 (2010), 74–81 (In English) | DOI | MR | Zbl
[5] F. Bonomo, M. Chudnovsky, P. Maceli, O. Schaudt, M. Stein, M. Zhong, “Three-coloring and list three-coloring of graphs without induced paths on seven vertices”, Combinatorica, 38:4 (2018), 779–801 (In English) | DOI | MR | Zbl
[6] S. Spirkl, M. Chudnovsky, M. Zhong, “Four-coloring $P_6$-free graphs”, Simposium on Discrete Algorithims, 2019, 1239–1256 (In English) | MR | Zbl
[7] S. Huang, “Improved complexity results on $k$-coloring $P_t$-free graphs”, European Journal of Combinatorics, 51:1 (2016), 336–346 (In English) | DOI | MR | Zbl
[8] D. S. Malyshev, “The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs”, Discrete Mathematics, 338:11 (2015), 1860–1865 (In English) | DOI | MR | Zbl
[9] D. S. Malyshev, “The complexity of the vertex 3-colorability problem for some hereditary classes defined by 5-vertex forbidden induced subgraphs”, Graphs and Combinatorics, 33:4 (2017), 1009–1022 (In English) | DOI | MR | Zbl
[10] D. V. Sirotkin, D. S. Malyshev, “On the complexity of the vertex 3-coloring problem for the hereditary graph classes with forbidden subgraphs of small size”, Journal of Applied and Industrial Mathematics, 25:4 (2018), 759–769 (In English) | DOI | MR | Zbl
[11] R. L. Brooks, “On colouring the nodes of a network”, Proceedings of Cambridge Philosophical Society, Mathematical and physical sciences., 37:2 (1941), 194–197 (In English) | DOI | MR