Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 469-479.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper addresses the problem of dynamic identification of mixed boundary conditions for one-dimensional convection-diffusion transport model based on noisy measurements of the function of interest. Using finite difference method the original model with the partial differential equation is replaced with the discrete linear dynamic system with noisy multisensor measurements in which boundary conditions are included as unknown input vector. To solve the problem, the algorithm of simultaneous estimation of the state and input vectors is used. The results of numerical experiments are presented which confirm the practical applicability of the proposed method.
Keywords: partial differential equations, boundary problems, discrete linear stochastic system, parameter identification
Mots-clés : optimal estimation.
@article{SVMO_2019_21_4_a5,
     author = {A. N. Kuvshinova},
     title = {Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {469--479},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a5/}
}
TY  - JOUR
AU  - A. N. Kuvshinova
TI  - Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2019
SP  - 469
EP  - 479
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a5/
LA  - ru
ID  - SVMO_2019_21_4_a5
ER  - 
%0 Journal Article
%A A. N. Kuvshinova
%T Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2019
%P 469-479
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a5/
%G ru
%F SVMO_2019_21_4_a5
A. N. Kuvshinova. Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 469-479. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a5/

[1] A. M. Denisov, Introduction to the theory of inverse problems, Studies. benefit, Publishing House of Moscow State University, Moscow, 1994, 208 pp. (In Russ.) | MR

[2] A. I. Leontyev, Theory of heat and mass transfer, studies. for machine building. spets. Techn. universities and higher education institutions, MGTU, Moscow, 1997, 683 pp. (In Russ.)

[3] S. Farlou, Partial differential equations for scientists and engineers, Mir, Moscow, 1985, 384 pp. (In Russ.)

[4] S. Gillijns, B. D. Moor, “Joint state and boundary condition estimation in linear data assimilation using basis function expansion”, Proceedings of the 26th IASTED International Conference on Modelling, Identification, and Control (Innsbruck, Austria), 2007, 458–463

[5] A. V. Tsyganov, Yu. V. Tsyganova, A. N. Kuvshinova, H. R. Tapia Garza, “Metaheuristic algorithms for identification of the convection velocity in the convection-diffusion transport model”, Proceedings of the II International Scientific and Practical Conference “Fuzzy Technologies in the Industry – FTI 2018”, 2018, 188–196

[6] A.V. Tsyganov, Yu.V. Tsyganova, A.N. Kuvshinova, “Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements”, Proceedings of the V International Conference and Youth School «Information Technologies and Nanotechnologies», New technique, 2019, 169–177 (In Russ.)

[7] S. Gillijns, B. D. Moor, “Unbiased minimum-variance input and state estimation for linear discrete-time systems”, Automatica, 43 (2007), 111–116 | DOI | MR | Zbl

[8] P. K. Kitanidis, “Unbiased minimum-variance linear state estimation”, Automatica, 23:6 (1987), 775–778 | DOI | Zbl

[9] M. Darouach, M. Zasadzinski, “Unbiased minimum variance estimation for systems with unknown exogenious inputs”, Automatica, 33:4 (1997), 717–719 | DOI | MR | Zbl