Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_4_a5, author = {A. N. Kuvshinova}, title = {Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {469--479}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a5/} }
TY - JOUR AU - A. N. Kuvshinova TI - Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 469 EP - 479 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a5/ LA - ru ID - SVMO_2019_21_4_a5 ER -
%0 Journal Article %A A. N. Kuvshinova %T Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 469-479 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a5/ %G ru %F SVMO_2019_21_4_a5
A. N. Kuvshinova. Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 469-479. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a5/
[1] A. M. Denisov, Introduction to the theory of inverse problems, Studies. benefit, Publishing House of Moscow State University, Moscow, 1994, 208 pp. (In Russ.) | MR
[2] A. I. Leontyev, Theory of heat and mass transfer, studies. for machine building. spets. Techn. universities and higher education institutions, MGTU, Moscow, 1997, 683 pp. (In Russ.)
[3] S. Farlou, Partial differential equations for scientists and engineers, Mir, Moscow, 1985, 384 pp. (In Russ.)
[4] S. Gillijns, B. D. Moor, “Joint state and boundary condition estimation in linear data assimilation using basis function expansion”, Proceedings of the 26th IASTED International Conference on Modelling, Identification, and Control (Innsbruck, Austria), 2007, 458–463
[5] A. V. Tsyganov, Yu. V. Tsyganova, A. N. Kuvshinova, H. R. Tapia Garza, “Metaheuristic algorithms for identification of the convection velocity in the convection-diffusion transport model”, Proceedings of the II International Scientific and Practical Conference “Fuzzy Technologies in the Industry – FTI 2018”, 2018, 188–196
[6] A.V. Tsyganov, Yu.V. Tsyganova, A.N. Kuvshinova, “Dynamic identification of boundary conditions for convection-diffusion transport model in the case of noisy measurements”, Proceedings of the V International Conference and Youth School «Information Technologies and Nanotechnologies», New technique, 2019, 169–177 (In Russ.)
[7] S. Gillijns, B. D. Moor, “Unbiased minimum-variance input and state estimation for linear discrete-time systems”, Automatica, 43 (2007), 111–116 | DOI | MR | Zbl
[8] P. K. Kitanidis, “Unbiased minimum-variance linear state estimation”, Automatica, 23:6 (1987), 775–778 | DOI | Zbl
[9] M. Darouach, M. Zasadzinski, “Unbiased minimum variance estimation for systems with unknown exogenious inputs”, Automatica, 33:4 (1997), 717–719 | DOI | MR | Zbl