Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_4_a2, author = {O. E. Galkin and S. Yu. Galkina}, title = {On the invertibility of solutions of first order linear homogeneous differential equations in {Banach} algebras}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {430--442}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a2/} }
TY - JOUR AU - O. E. Galkin AU - S. Yu. Galkina TI - On the invertibility of solutions of first order linear homogeneous differential equations in Banach algebras JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 430 EP - 442 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a2/ LA - ru ID - SVMO_2019_21_4_a2 ER -
%0 Journal Article %A O. E. Galkin %A S. Yu. Galkina %T On the invertibility of solutions of first order linear homogeneous differential equations in Banach algebras %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 430-442 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a2/ %G ru %F SVMO_2019_21_4_a2
O. E. Galkin; S. Yu. Galkina. On the invertibility of solutions of first order linear homogeneous differential equations in Banach algebras. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 430-442. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a2/
[1] E. Hille, R. S. Phillips, Functional analysis and semi-groups, American Mathematical Society, Providence, Moscow, 1957, 830 pp.
[2] V. M. Tikhomirov, “Banach algebras”, addition to the book, Elements of function theory and functional analysis, Nauka Publ., Moscow, 1976, 513-528 (In Russ.)
[3] J. L. Massera, J. J. Schaffer, Linear differential equations and function spaces, Academic Press, New York and London, 1966, 404 pp. | MR | Zbl
[4] S. G. Krein, Functional analysis, Nauka Publ., Moscow, 1972, 544 pp. (In Russ.) | MR
[5] B. C. Dhage, “A functional integro-differential equation in Banach algebras”, Functional differential equations, 11:3-4 (2004), 321–332 | MR | Zbl
[6] V. P. Derevenskii, “Linear ordinary differential equations with constant coefficients over a Banach algebra”, Math. Notes, 84:3 (2008), 342–355 | DOI | DOI | MR | Zbl
[7] V. Dragan, T. Morozan, A.-M. Stoica, “Linear differential equations with positive evolution on ordered banach spaces”, Mathematical Methods in Robust Control of Linear Stochastic Systems, Springer, New York, 2013, 39-120 | DOI | MR
[8] D. Aerts, B. Van Steirteghem, “Quantum axiomatics and a theorem of M. P. Solèr”, Internat. J. Theoret. Phys., 39:3 (2000), 497–502 | DOI | MR | Zbl
[9] V. Moretti, M. Oppio, “Quantum theory in real Hilbert space: how the complex Hilbert space structure emerges from Poincaré symmetry”, Rev. Math. Phys., 29:6 (2017), 85 pp. | DOI | MR
[10] L. D. Landau, L. M. Lifshits, Quantum mechanics. Non-relativistic theory, Nauka Publ., Moscow, 1989, 768 pp. (In Russ.) | MR
[11] J. H. Conway, D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A. K. Peters Ltd, Natick, MA, 2004, 184 pp. | MR
[12] A. N. Kolmogorov, S. V. Fomin, Elements of function theory and functional analysis, Nauka Publ., Moscow, 1976, 543 pp. (In Russ.) | MR
[13] L. A. Lyusternik, V. I. Sobolev, Short course of functional analysis, Visshaya shkola Publ., Moscow, 1982, 272 pp. (In Russ.) | MR