Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_3_a2, author = {F. V. Lubyshev and M. \`E. Fairuzov}, title = {On an iterative process for the grid conjugation problem with iterations on the boundary of the solution discontinuity}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {329--342}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a2/} }
TY - JOUR AU - F. V. Lubyshev AU - M. È. Fairuzov TI - On an iterative process for the grid conjugation problem with iterations on the boundary of the solution discontinuity JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 329 EP - 342 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a2/ LA - ru ID - SVMO_2019_21_3_a2 ER -
%0 Journal Article %A F. V. Lubyshev %A M. È. Fairuzov %T On an iterative process for the grid conjugation problem with iterations on the boundary of the solution discontinuity %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 329-342 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a2/ %G ru %F SVMO_2019_21_3_a2
F. V. Lubyshev; M. È. Fairuzov. On an iterative process for the grid conjugation problem with iterations on the boundary of the solution discontinuity. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 3, pp. 329-342. http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a2/
[1] F. V. Lubyshev, “Finite difference approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and solutions”, Computational mathematics and mathematical physics, 52:8 (2012), 1094–1114 | DOI | MR | Zbl
[2] A. A. Samarskij, P. N. Vabishchevich, Computational heat transfer, Editorial URSS, Moscow, 2003, 784 pp. (In Russ.)
[3] A. A. Samarskij, V. B. Andreev, Difference methods for elliptic equations, Nauka, Moscow, 1976, 352 pp. (In Russ.)
[4] V. S. Zarubin, Engineering methods for solving heat conduction problems, Energoatomizdat, Moscow, 1983, 328 pp. (In Russ.)
[5] E. M. Kartashov, Analytical methods in the theory of thermal conductivity of solids, Vysshaya shkola, Moscow, 1985, 480 pp. (In Russ.)
[6] V. A. Tsurko, “The accuracy of finite-difference schemes for parabolic equations with a discontinuous solution”, Differential Equations, 36:7 (2000), 1094–1101 | DOI | MR | Zbl
[7] V. A. Tsurko, “Finite-difference methods for convection-diffusion problems with discontinuous coefficients and solutions”, Differential Equations, 41:2 (2005), 290–296 | DOI | MR | Zbl
[8] A. A. Samarskij, R. D. Lazarov, V. L. Makarov, Difference schemes for differential equations with generalized solutions, Vysshaya shkola, Moscow, 1987, 296 pp. (In Russ.)
[9] H. Gajewski, K. Greger, K. Zacharias, Nichtlineare operatorgleichungen und operatordifferentialgleichungen, Akademie Verlag, Berlin, 1974, 281 pp. | MR | Zbl
[10] A. Kufner, S. Fuchik, Nonlinear differential equations, Elsevier, Prague, 1980, 359 pp. | MR | Zbl
[11] F. E.Brauder, “Nonlinear elliptic boundary value problems”, Nonlinear elliptic boundary value problems, Materialy k sovmestnomu sovetsko-amerikanskomu simpoziumu po uravneniyam s chastnymi proizvodnymi, Publishing House of the Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, 1963 (In Russ.)