Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_3_a0, author = {M. N. Afanaseva and E. B. Kuznetsov}, title = {The discrete continuation in the boundary value problem for systems of nonlinear differential equations with deviation argument}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {309--316}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a0/} }
TY - JOUR AU - M. N. Afanaseva AU - E. B. Kuznetsov TI - The discrete continuation in the boundary value problem for systems of nonlinear differential equations with deviation argument JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 309 EP - 316 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a0/ LA - ru ID - SVMO_2019_21_3_a0 ER -
%0 Journal Article %A M. N. Afanaseva %A E. B. Kuznetsov %T The discrete continuation in the boundary value problem for systems of nonlinear differential equations with deviation argument %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 309-316 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a0/ %G ru %F SVMO_2019_21_3_a0
M. N. Afanaseva; E. B. Kuznetsov. The discrete continuation in the boundary value problem for systems of nonlinear differential equations with deviation argument. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 3, pp. 309-316. http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a0/
[1] Y. F. Dolgii, P. G. Surkov, Mathematical models of delay dynamical systems, Ural Federal University Publ., Ekaterinburg, 2012, 119 pp. (In Russ.)
[2] M. N. Afanaseva, E. B. Kuznetsov, “Numerical method for solving nonlinear boundary value problem for differential equations with retarded argument”, Trudy MAI, 88 (2016) (In Russ.)
[3] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobel'kov, Numerical Methods, Nauka Publ., Moscow, 1987, 600 pp. (In Russ.) | MR
[4] V. I. Shalashilin, E. B. Kuznetsov, Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Editorial URSS, Moscow, 1999, 224 pp. (In Russ.)
[5] E. M. Budkina, E. B. Kuznetsov, “Modeling of technological process for aircraft structural components manufacturing based on the best parametrization and boundary value problem for nonlinear differential-algebraic equations”, Aerospace MAI Journal, 23:1 (2016), 189–196 (In Russ.)
[6] S. D. Krasnikov, E. B. Kuznetsov, “Parametrization of the numerical solution of boundary value problems for nonlinear differential equations”, Comput. Math. Math. Phys., 45:12 (2005), 2148–2158 | MR | Zbl
[7] S. S. Dmitriev, E. B. Kuznetsov, “Numerical solution to systems of delay integrodifferential algebraic equations”, Comput. Math. Math. Phys., 48:3 (2008), 430–444 | MR | Zbl
[8] M. S. Roberts, J. S. Shipman, Two-point boundary value problems: shooting methods, Elsevier, New York, 1972, 269 pp. | MR | Zbl
[9] A. M. Samoilenko, N. I. Ronto, Numerical-analytic methods in theory of boundary-value problems, Naukova Dumka, Kiev, 1986, 222 pp. (In Russ.) | MR
[10] M. E. Lahaye, “Une metode de resolution d’une categorie d’equations transcendentes”, Compter Rendus hebdomataires des seances de L’Academie des sciences, 198:21 (1934), 1840–1842
[11] E. B. Kuznetsov, “Optimal parametrization in numerical construction of curve”, Journal of the Franklin Institute, 344:21 (2007), 658–671 | DOI | MR | Zbl