Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_2_a7, author = {A. A. Fedorova}, title = {Empirical and physics-based approaches to estimate states of lithium-ion battery}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {259--268}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a7/} }
TY - JOUR AU - A. A. Fedorova TI - Empirical and physics-based approaches to estimate states of lithium-ion battery JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 259 EP - 268 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a7/ LA - en ID - SVMO_2019_21_2_a7 ER -
A. A. Fedorova. Empirical and physics-based approaches to estimate states of lithium-ion battery. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 259-268. http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a7/
[1] V. Pop et al., Battery management systems: Accurate state-of-charge indication for battery-powered applications, Springer Science Business Media, 2008
[2] M. Murnane et al., A closer look at state of charge (SOC) and state of health (SOH) estimation techniques for batteries, , 2017 https://www.analog.com/media/en/technical-documentation/technical-articles/A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-....pdf
[3] S. Nejad et al., “A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states”, Journal of Power Sources, 316 (2016), 183–196 | DOI
[4] A. Farmann et al., “A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles”, Journal of Power Sources, 329 (2016), 123–137 | DOI
[5] S. Nejad et al., “Enhanced state-of-charge estimation for lithium-ion iron phosphate cells with flat open-circuit voltage curves”, IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2015, 003187–003192
[6] T. Xidong et al., “Capacity estimation for Li-ion batteries”, Proceedings of the 2011 American Control Conference, IEEE, 2011, 947–952
[7] R. R. Richardson et al., “Gaussian process regression for forecasting battery state of health”, Journal of Power Sources, 357 (2017), 209–219 | DOI
[8] X. Zhang et al., “A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter”, Applied energy, 216 (2018), 442–451 | DOI
[9] K. A. Smith et al., “Control oriented 1D electrochemical model of lithium ion battery”, Energy Conversion and management, 48:9 (2007), 2565–2578 | DOI
[10] T. F. Fuller et al., “Simulation and optimization of the dual lithium ion insertion cell”, Journal of the Electrochemical Society, 141:1 (1994), 1–10 | DOI | MR
[11] G. L. Plett, “Recursive approximate weighted total least squares estimation of battery cell total capacity”, Journal of Power Sources, 196:4 (2011), 2319–2331 | DOI
[12] R. Ahmed et al., “Model-based parameter identification of healthy and aged li-ion batteries for electric vehicle applications”, SAE International Journal of Alternative Powertrains, 4:2 (2015), 233–247, JSTOR | DOI
[13] F. Zhang et al., “State-of-charge estimation based on microcontroller-implemented sigma-point kalman filter in a modular cell balancing system for lithium-ion battery packs”, 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, 2015, 1–7
[14] S. Zhao et al., “Global sensitivity analysis of battery equivalent circuit model parameters”, 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE, 2016, 1–4
[15] G. L. Plett, Battery management systems, v. II, Equivalent-circuit methods, Artech House, 2015
[16] M. Doyle et al., “Comparison of modeling predictions with experimental data from plastic lithium ion cells”, Journal of the Electrochemical Society, 143:6 (1996), 1890–1903 | DOI
[17] J. L. Lee et al., “One-dimensional physics-based reduced-order model of lithium-ion dynamics”, Journal of Power Sources, 220 (2012), 430–448 | DOI
[18] Di D. Domenico et al., “Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter”, Journal of dynamic systems, measurement, and control, 132:6 (2010), 061302 | DOI
[19] K. D. Stetzel et al., “Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter”, Journal of Power Sources, 278 (2015), 490–505 | DOI
[20] J. L. Lee et al., “Discrete-time realization of transcendental impedance models, with application to modeling spherical solid diffusion”, Journal of Power Sources, 206 (2012), 367–377 | DOI