Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_2_a6, author = {R. V. Zhalnin and V. F. Masyagin and E. E. Peskova and V. F. Tishkin}, title = {Application of discontinuous {Galerkin} method to modeling of two-dimensional flows of a multicomponent ideal gases mixture using local adaptive mesh refinement}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {244--258}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a6/} }
TY - JOUR AU - R. V. Zhalnin AU - V. F. Masyagin AU - E. E. Peskova AU - V. F. Tishkin TI - Application of discontinuous Galerkin method to modeling of two-dimensional flows of a multicomponent ideal gases mixture using local adaptive mesh refinement JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 244 EP - 258 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a6/ LA - ru ID - SVMO_2019_21_2_a6 ER -
%0 Journal Article %A R. V. Zhalnin %A V. F. Masyagin %A E. E. Peskova %A V. F. Tishkin %T Application of discontinuous Galerkin method to modeling of two-dimensional flows of a multicomponent ideal gases mixture using local adaptive mesh refinement %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 244-258 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a6/ %G ru %F SVMO_2019_21_2_a6
R. V. Zhalnin; V. F. Masyagin; E. E. Peskova; V. F. Tishkin. Application of discontinuous Galerkin method to modeling of two-dimensional flows of a multicomponent ideal gases mixture using local adaptive mesh refinement. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 244-258. http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a6/
[1] R. V. Zhalnin, V. F. Masyagin, M. E. Ladonkina, V. F. Tishkin, “Solving the problem of non-stationary filtration of substance by the discontinuous Galerkin method on unstructured grids”, Computational Mathematics and Mathematical Physics, 56:6 (2016), 989–998 (In Russ.) | DOI | MR | Zbl
[2] M. M. Krasnov, M. E. Ladonkina, V. F. Tishkin, “Implementation of the Galerkin discontinous method in the DGM software package”, Keldysh Institute preprints, 2018, 245, 31 pp. (In Russ.)
[3] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Construction of the limiter based on averaging of solutions for discontinued Galerkin method”, Matematicheskoye Modelirovaniye, 30:5 (2018), 99–116 (In Russ.)
[4] Y. A. Kriksin, V. F. Tishkin, “Variational entropic regularization of discontinuous Galerkin method for gas dynamics equations”, Matematicheskoye Modelirovaniye, 31:5 (2019), 69–84 (In Russ.) | DOI
[5] M. D. Bragin,Y. A. Kriksin, V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp. (In Russ.)
[6] B. Cockburn, Ch.-W. Shu, “Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems”, Journal of Scientific Computing, 16:3 (2001), 173–261 | DOI | MR | Zbl
[7] T. Chen, Ch.-W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws”, Journal of Computational Physics, 345 (2017), 427–461 | DOI | MR | Zbl
[8] C. Burstedde, L. C. Wilcox, O. Ghattas, “p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees”, SIAM Journal on Scientific Computing, 33:3 (2011), 1103–1133 | DOI | MR | Zbl
[9] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Computational Mathematics and Mathematical Physics, 1:2 (1961), 267–279
[10] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl
[11] E. F. Toro, M. Spruce, W. Speares, “Restoration of the Contact Surface in the HLL-Riemann Solver”, Shock Waves, 4 (1994), 25–34 | DOI | Zbl
[12] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes”, Journal of Computational Physics, 77 (1988), 439–471 | DOI | MR | Zbl
[13] T. J. Barth, D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, AIAA Paper 89-0366, 1989
[14] M. J. Berger, P. Colella, “Local adaptive mesh refinement for shock hydrodynamics”, Journal of Computational Physics, 82 (1989), 64–84 | DOI | Zbl
[15] F. Poggi, M.-H. Thorembey, G. Rodrigues, “Velocity measurements in turbulent gaseous mixtures induced by Richtmyer–Meshkov instability”, Phisics of Fluids, 10:11 (1998), 2698–2700 | DOI
[16] R. V. Zhalnin, N. V. Zmitrenko, M. E. Ladonkina, V. F. Tishkin, “Numerical simulation of Richtmyer-Meshkov instability development using the difference schemes of high order of accuracy”, Matematicheskoye Modelirovaniye, 19:10 (2007), 61–66 (In Russ.) | MR | Zbl
[17] M. Kucharik, R. V. Garimella, S. P. Schofield, M. J. Shashkov, “A comparative study of interface reconstruction methods for multi-material ale simulations”, Journal of Computational Physics, 229:7 (2009), 2432–2452 | DOI | MR
[18] M. Kucharik, M. J. Shashkov, “Conservative multi-material remap for staggered multi-material arbitrary lagrangian-eulerian methods”, Journal of Computational Physics, 258 (2014), 268–304 | DOI | MR | Zbl