Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_2_a4, author = {D. V. Sirotkin and D. S. Malyshev}, title = {A constructive existence theorem related to local transformations of graphs for the independent set problem}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {215--221}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a4/} }
TY - JOUR AU - D. V. Sirotkin AU - D. S. Malyshev TI - A constructive existence theorem related to local transformations of graphs for the independent set problem JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 215 EP - 221 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a4/ LA - ru ID - SVMO_2019_21_2_a4 ER -
%0 Journal Article %A D. V. Sirotkin %A D. S. Malyshev %T A constructive existence theorem related to local transformations of graphs for the independent set problem %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 215-221 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a4/ %G ru %F SVMO_2019_21_2_a4
D. V. Sirotkin; D. S. Malyshev. A constructive existence theorem related to local transformations of graphs for the independent set problem. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 215-221. http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a4/
[1] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Mir Publ., Moscow, 1982, 416 pp. (In Russ.)
[2] V. E. Alekseev, V. V. Lozin, “On local transformations of graphs that preserve the independence number”, Diskretnyy Analiz i Issledovaniye Operatsiy, 5:1 (1998), 3–19 (In Russ) | MR | Zbl
[3] D. V. Sirotkin, “Theorems of existence and sufficiency connected with local transformations of graphs for the $k$-colourability problem”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 19:2 (2017), 98–104 (In Russ) | Zbl
[4] D. V. Sirotkin, “On the complexity for constructing a 3-colouring for planar graphs with short facets”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:2 (2018), 199–205 (in Russ)
[5] D. V. Sirotkin, D. S. Malyshev, “A method of graph reduction and its applications”, Discrete Mathematics and Applications, 28:4 (2018), 249–258 | DOI | MR | Zbl
[6] D. S. Malyshev, D. V. Sirotkin, “Polynomial-time solvability of the independent set problem in a certain class of subcubic planar graphs”, Journal of Applied and Industrial Mathematics, 11:3 (2017), 400–414 | DOI | MR | Zbl
[7] D. V. Sirotkin, D. S. Malyshev, “On the complexity of the vertex 3-coloring problem for the hereditary graph classes with forbidden subgraphs of small size”, Journal of Applied and Industrial Mathematics, 25:4 (2018), 759–769 | DOI | MR
[8] V. E. Alekseev, D. S. Malyshev, “Planar graph classes with the independent set problem solvable in polynomial time”, Journal of Applied and Industrial Mathematics, 3:1 (2008), 1–5 | DOI | MR
[9] B. Lévêque, D. de Werra, “Graph transformations preserving the stability number”, Discrete Applied Mathematics, 160:18 (2012), 3–8 | MR
[10] V. V. Lozin, “Stability preserving transformations of graphs”, Annals of Operations Research, 188 (2011), 331–341 | DOI | MR | Zbl
[11] D. S. Malyshev, “Classes of subcubic planar graphs for which the independent set problem is polynomially solvable”, Journal of Applied and Industrial Mathematics, 7:4 (2013), 537–548 | DOI | MR | Zbl