Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_2_a3, author = {F. V. Lubyshev and A. R. Manapova}, title = {An approximation of problems of optimal control on the coefficients of elliptic convection-diffusion equations with an imperfect contact matching condition}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {187--214}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a3/} }
TY - JOUR AU - F. V. Lubyshev AU - A. R. Manapova TI - An approximation of problems of optimal control on the coefficients of elliptic convection-diffusion equations with an imperfect contact matching condition JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 187 EP - 214 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a3/ LA - ru ID - SVMO_2019_21_2_a3 ER -
%0 Journal Article %A F. V. Lubyshev %A A. R. Manapova %T An approximation of problems of optimal control on the coefficients of elliptic convection-diffusion equations with an imperfect contact matching condition %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 187-214 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a3/ %G ru %F SVMO_2019_21_2_a3
F. V. Lubyshev; A. R. Manapova. An approximation of problems of optimal control on the coefficients of elliptic convection-diffusion equations with an imperfect contact matching condition. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 187-214. http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a3/
[1] F. P. Vasil’ev, Optimization methods, Moscow center for continuous mathematical education, Moscow, 2011, 624 pp. (In Russ.)
[2] A. Z. Ishmukhametov, Stability and approximation of optimal control problems of distributed parameter systems, Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2001, 120 pp. (In Russ.)
[3] F. V. Lubyshev , A. R. Manapova, “On some optimal control problems and their finite difference approximations and regularization for quasilinear elliptic equations with controls in the coefficients”, Comput. Math. Math. Phys., 47:3 (2007), 376–396 (In Russ.) | MR | Zbl
[4] F. V. Lubyshev, A. R. Manapova, “Difference approximations of optimization problems for semilinear elliptic equations in a convex domain with controls in the coefficients multiplying the highest derivatives”, Comput. Math. Math. Phys., 53:1 (2013), 20–46 (In Russ.) | DOI | MR | Zbl
[5] F. V. Lubyshev, A. R. Manapova, M. E, Fairuzov, “Approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and solutions and with control in matching boundary conditions”, Comput. Math. Math. Phys., 54:11 (2014), 1767–1792 (In Russ.) | DOI | MR | Zbl
[6] F. V. Lubyshev, M. E, Fairuzov, “Approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and states and with controls in the coefficients multiplying the highest derivatives”, Comput. Math. Math. Phys., 56:7 (2016), 1267–1293 (In Russ.) | DOI | Zbl
[7] F. Lubyshev, A. Manapova, “Numerical solution of optimization problems for semi-linear elliptic equations with discontinuous coefficients and solutions”, Applied Numerical Mathematics, 104 (2016), 182–203 | DOI | MR | Zbl
[8] F. V. Lubyshev and A. R. Manapova, “On certain problems of optimal control and their approximations for some non-self-adjoint elliptic equations of the convection-diffusion type”, Itogi Nauki i Tekhniki. Ser. «Sovrem. Mat. Pril. Temat. Obz.», 143 (2017), 3–23 (In Russ.)
[9] A. A. Samarskij, Difference theory, Nauka, M., 1989, 616 pp. (In Russ.) | MR
[10] N. T. Drenska, “Accuracy of numerical algorithms for the one-dimensional problem of cooling metals in molds”, Vestn. Mosk. Univ. Ser. 15 «Vychisl. Mat. Kibern.», 1981, no. 4, 15–21 (In Russ.) | MR | Zbl
[11] G. I. Marchuk, Adjoint equations and complex system analysis, Nauka, M., 1992, 335 pp. (In Russ.)
[12] H. Gajewski, K. Greger, K. Zacharias, Nichtlineare operatorgleichungen und operatordifferentialgleichungen, World, M., 1978, 336 pp.
[13] F. E. Browder, Transactions of the Symposium on Partial Differential Equations, Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1963
[14] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, World, M., 1973, 407 pp. (In Russ.)
[15] A. A. Samarskij, P. N. Vabishchevich, Computational heat transfer, Editorial URSS, M., 2003, 784 pp. (In Russ.)