Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_2_a2, author = {A. A. Kosov and A. V. Shchennikov and E. V. Shchennikova and R. V. Zhalnin and P. A. Shamanaev}, title = {Review of the works of {V.\,N.~Shchennikova} on the study of the convergence of nonlinear almost periodic systems by the comparison method}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {175--186}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a2/} }
TY - JOUR AU - A. A. Kosov AU - A. V. Shchennikov AU - E. V. Shchennikova AU - R. V. Zhalnin AU - P. A. Shamanaev TI - Review of the works of V.\,N.~Shchennikova on the study of the convergence of nonlinear almost periodic systems by the comparison method JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 175 EP - 186 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a2/ LA - ru ID - SVMO_2019_21_2_a2 ER -
%0 Journal Article %A A. A. Kosov %A A. V. Shchennikov %A E. V. Shchennikova %A R. V. Zhalnin %A P. A. Shamanaev %T Review of the works of V.\,N.~Shchennikova on the study of the convergence of nonlinear almost periodic systems by the comparison method %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 175-186 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a2/ %G ru %F SVMO_2019_21_2_a2
A. A. Kosov; A. V. Shchennikov; E. V. Shchennikova; R. V. Zhalnin; P. A. Shamanaev. Review of the works of V.\,N.~Shchennikova on the study of the convergence of nonlinear almost periodic systems by the comparison method. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 175-186. http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a2/
[1] V. I. Zubov, Oscillations in nonlinear and controlled systems, Sudpromgiz, Leningrad, 1962, 631 pp. (In Russ.)
[2] V. M. Matrosov, “To the theory of motion stability”, Journal of Applied Mathematics and Mechanics, XXVI:6 (1962), 992–1000 (In Russ.)
[3] V. M. Matrosov, L. Yu. Anapol'skiy, S. N. Vasil'ev, Comparison method in mathematical systems theory, Nauka Publ., Novosibirsk, 1980, 480 pp. (In Russ.)
[4] V. M. Matrosov, “The comparison principle with a vector-valued Lyapunov function. IV”, Differentsialnye uravneniya, 5:12 (1969), 2129–2143 (In Russ.) | MR | Zbl
[5] V. M. Matrosov, “Method of Lyapunov vector functions in systems with feedback”, Autom. Remote Control, 33:9 (1972), 1458–1468 | Zbl
[6] V. N. Shchennikov, “The convergence phenomenon of a certain nonlinear system”, Differentsialnye uravneniya, 8:4 (1972), 737–739 (In Russ.) | MR
[7] V. N. Shchennikov, “On theorems on the existence of almost periodic solutions in nonlinear systems of differential equations”, Functional analysis and questions of the qualitative theory of differential equations, MRSU, Saransk, 1976, 158–161 (In Russ.)
[8] V. N. Shchennikov, “Investigation of convergence in a nonautonomous differential system by means Lyapunov vector-functions”, Differentsialnye uravneniya, 19:11 (1983), 1902–1907 (In Russ.) | MR
[9] V. N. Shchennikov, “The convergence phenomenon in complex systems of differential equations”, Differentsialnye uravneniya, 20:9 (1984), 1566–1571 (In Russ.) | MR
[10] V. N. Shchennikov, “Stability under continuous disturbances”, Autom. Remote Control, 46 (1985), 197–200
[11] V. N. Shchennikov, “Investigation of an almost periodic state of a nonlinear controllable system”, Differentsialnye uravneniya, 22:12 (1986), 2182–2183 (In Russ.) | MR
[12] V. N. Shchennikov, “On the theory of forced almost periodic oscillations in nonlinear controlled systems”, Matematicheskoe modelirovanie, 7:5 (1995), 29–30 (In Russ.)
[13] A. A. Kosov, V. N. Shchennikov, “On the convergence phenomen in complex almost periodic systems”, Differentsialnye uravneniya, 50:12 (2014), 1571–1581 (In Russ.) | DOI | MR | Zbl
[14] V. S. Elfimov, A. V. Shchennikov, V. N. Shchennikov, “Convergence of operated dynamic systems”, University Proceedings. Volga Region. Physical and Mathematical Sciences, 46:2 (2018), 86–94 (In Russ.)