Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_2_a1, author = {A. A. Bosova and O. V. Pochinka}, title = {On periodic mapping data of a two-dimensional torus with one saddle orbit}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {164--174}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a1/} }
TY - JOUR AU - A. A. Bosova AU - O. V. Pochinka TI - On periodic mapping data of a two-dimensional torus with one saddle orbit JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 164 EP - 174 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a1/ LA - ru ID - SVMO_2019_21_2_a1 ER -
%0 Journal Article %A A. A. Bosova %A O. V. Pochinka %T On periodic mapping data of a two-dimensional torus with one saddle orbit %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 164-174 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a1/ %G ru %F SVMO_2019_21_2_a1
A. A. Bosova; O. V. Pochinka. On periodic mapping data of a two-dimensional torus with one saddle orbit. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 164-174. http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a1/
[1] A. N. Sharkovsky, “Coexistence of the cycles of a continuous mapping of the line into itself”, Ukraine. math journals, 16:1 (1964), 61-71 (In Russ.)
[2] A. Li, J. Yorke, “Period three implies chaos.”, Amer. Math. Monthly, 82:10 (1975), 985-992 | DOI | MR | Zbl
[3] R. F. Brown., The Lefschetz fixed point theorem, Scott, Foresman and Company, 1971 | MR | Zbl
[4] J. Franks, Homology and dynamical systems, CBSM Regional Conf. Ser. in Math., 1982 | MR
[5] P. Blanchard., “Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of surfaces”, Duke Mathematical Journal, 47:1 (1980), 33–46 | DOI | MR | Zbl
[6] J. Franks, C. Narasimhan, “The periodic behavior of Morse-Smale diffeomorphisms”, Invent. Math., 48 (1978), 279–292 | DOI | MR | Zbl
[7] C. Narasimhan, “The periodic behavior of Morse-Smale diffeomorphisms on compact surfaces”, Trans. Amer. Math. Soc., 248 (1979), 145–169 | DOI | MR | Zbl
[8] S. Batterson, J. Smillie, Filtrations and periodic data on surfaces, 1986, 234 pp. | MR | Zbl
[9] A. N. Bezdenezhnykh, V. Z. Grines, Realization of gradient-like diffeomorphisms of two-dimensional manifolds, Inte-gral'nyi Uravn., Gor'kij Gos. Univ, 1985, 37 pp. (In Russ.)
[10] J. Nielsen, “Die Struktur periodischer Transformationen von Flächen”, Math.-fys. Medd. Danske Vid. Selsk, 15:1 (1937), 65–102
[11] V. Grines, O. Pochinka S. Van Strien, A complete topological classifcation of morse-smale difeomorphisms on surfaces: a kind of kneading theory in dimension two, Cornell University Library, 2017, arXiv: 1712.02230 [math.DS]
[12] T. Medvedev, E. Nozdrinova, O.Pochinka, “On periodic data of diffeomorphisms with one saddle orbit”, Topology Proceedings. USA, 54 (2019), 49–68 | MR | Zbl
[13] V. Grines , T. Medvedev , O. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Springer International Publishing Switzerland, 2016, 313 pp. | Zbl
[14] Yu. G. Borisovich, N. M. Bliznyakov, T. N. Fomenko, Y. A. Izrailevich, Introduction to Topology, High School, M., 1980, 416 pp. (In Russ.) | MR
[15] S. Smale, “Diferentiable dynamical systems.”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl