On periodic mapping data of a two-dimensional torus with one saddle orbit
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 164-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

Periodic data of diffeomorphisms with regular dynamics on surfaces were studied using zeta functions in a series of already classical works by such authors as P. Blanchard, J. Franks, S. Narasimhan, S. Batterson and others. The description of periodic data for gradient-like diffeomorphisms of surfaces were given in the work of A. Bezdenezhnykh and V. Grines by means of the classification of periodic surface transformations obtained by J. Nielsen. V. Grines, O. Pochinka, S. Van Strien showed that the topological classification of arbitrary Morse-Smale diffeomorphisms on surfaces is based on the problem of calculating periodic data of diffeomorphisms with a single saddle periodic orbit. Namely, the construction of filtering for Morse-Smale diffeomorphisms makes it possible to reduce the problem of studying periodic surface diffeomorphism data to the problem of calculating periodic diffeomorphism data with a single saddle periodic orbit. T. Medvedev, E. Nozdrinova, O. Pochinka solved this problem in a general formulation, that is, the periods of source orbits are calculated from a known period of the sink and saddle orbits. However, these formulas do not allow to determine the feasibility of the obtained periodic data on the surface of this kind. In an exhaustive way, the realizability problem is solved only on a sphere. In this paper we establish a complete list of periodic data of diffeomorphisms of a two-dimensional torus with one saddle orbit, provided that at least one nodal point of the map is fixed.
Keywords: stable and unstable manifolds, saddle orbit.
@article{SVMO_2019_21_2_a1,
     author = {A. A. Bosova and O. V. Pochinka},
     title = {On periodic mapping data of a two-dimensional torus with one saddle orbit},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {164--174},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a1/}
}
TY  - JOUR
AU  - A. A. Bosova
AU  - O. V. Pochinka
TI  - On periodic mapping data of a two-dimensional torus with one saddle orbit
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2019
SP  - 164
EP  - 174
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a1/
LA  - ru
ID  - SVMO_2019_21_2_a1
ER  - 
%0 Journal Article
%A A. A. Bosova
%A O. V. Pochinka
%T On periodic mapping data of a two-dimensional torus with one saddle orbit
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2019
%P 164-174
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a1/
%G ru
%F SVMO_2019_21_2_a1
A. A. Bosova; O. V. Pochinka. On periodic mapping data of a two-dimensional torus with one saddle orbit. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 164-174. http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a1/

[1] A. N. Sharkovsky, “Coexistence of the cycles of a continuous mapping of the line into itself”, Ukraine. math journals, 16:1 (1964), 61-71 (In Russ.)

[2] A. Li, J. Yorke, “Period three implies chaos.”, Amer. Math. Monthly, 82:10 (1975), 985-992 | DOI | MR | Zbl

[3] R. F. Brown., The Lefschetz fixed point theorem, Scott, Foresman and Company, 1971 | MR | Zbl

[4] J. Franks, Homology and dynamical systems, CBSM Regional Conf. Ser. in Math., 1982 | MR

[5] P. Blanchard., “Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of surfaces”, Duke Mathematical Journal, 47:1 (1980), 33–46 | DOI | MR | Zbl

[6] J. Franks, C. Narasimhan, “The periodic behavior of Morse-Smale diffeomorphisms”, Invent. Math., 48 (1978), 279–292 | DOI | MR | Zbl

[7] C. Narasimhan, “The periodic behavior of Morse-Smale diffeomorphisms on compact surfaces”, Trans. Amer. Math. Soc., 248 (1979), 145–169 | DOI | MR | Zbl

[8] S. Batterson, J. Smillie, Filtrations and periodic data on surfaces, 1986, 234 pp. | MR | Zbl

[9] A. N. Bezdenezhnykh, V. Z. Grines, Realization of gradient-like diffeomorphisms of two-dimensional manifolds, Inte-gral'nyi Uravn., Gor'kij Gos. Univ, 1985, 37 pp. (In Russ.)

[10] J. Nielsen, “Die Struktur periodischer Transformationen von Flächen”, Math.-fys. Medd. Danske Vid. Selsk, 15:1 (1937), 65–102

[11] V. Grines, O. Pochinka S. Van Strien, A complete topological classifcation of morse-smale difeomorphisms on surfaces: a kind of kneading theory in dimension two, Cornell University Library, 2017, arXiv: 1712.02230 [math.DS]

[12] T. Medvedev, E. Nozdrinova, O.Pochinka, “On periodic data of diffeomorphisms with one saddle orbit”, Topology Proceedings. USA, 54 (2019), 49–68 | MR | Zbl

[13] V. Grines , T. Medvedev , O. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Springer International Publishing Switzerland, 2016, 313 pp. | Zbl

[14] Yu. G. Borisovich, N. M. Bliznyakov, T. N. Fomenko, Y. A. Izrailevich, Introduction to Topology, High School, M., 1980, 416 pp. (In Russ.) | MR

[15] S. Smale, “Diferentiable dynamical systems.”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl