Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_2_a0, author = {I. V. Boykov and V. A. Ryazantsev}, title = {On the approximate method for determination of heat conduction coefficient}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {149--163}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a0/} }
TY - JOUR AU - I. V. Boykov AU - V. A. Ryazantsev TI - On the approximate method for determination of heat conduction coefficient JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 149 EP - 163 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a0/ LA - ru ID - SVMO_2019_21_2_a0 ER -
%0 Journal Article %A I. V. Boykov %A V. A. Ryazantsev %T On the approximate method for determination of heat conduction coefficient %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 149-163 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a0/ %G ru %F SVMO_2019_21_2_a0
I. V. Boykov; V. A. Ryazantsev. On the approximate method for determination of heat conduction coefficient. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 2, pp. 149-163. http://geodesic.mathdoc.fr/item/SVMO_2019_21_2_a0/
[1] E. A. Artyukhin, “Recovery of the temperature-dependence of the thermal-conduction coefficient”, High Temperature, 19:5 (1981), 963–967 (In Russ.)
[2] O. M. Alifanov, E. A. Artyukhin, S. V. Rumyantsev, Extremal methods of solution of the ill-posed problems and their application to the inverse heat exchange problems, Nauka Publ., Moscow, 1988, 288 pp. (In Russ.)
[3] S. A. Kolesnik, “A method for numerical solution of inverse problems for identification of nonlinear components of the heat transfer tensor for anisotropic materials”, Computational Technologies, 18:1 (2013), 34–44 (In Russ.)
[4] P. G. Danilaev, Inverse coefficient problems for parabolic equations and their applications, UNIPRESS Publ., Kazan, 1998, 128 pp. (In Russ.)
[5] P. G. Danilaev, “Comparison of two regularizing algorithms for solution of coefficient inverse problem”, Russian Mathematics (Izvestia VUS. Matematika), 47:5 (2003), 3–8 (In Russ.) | MR | Zbl
[6] A V. Penenko, “Discrete-analytic schemes for solving an inverse coefficient heat conduction problem in a layered medium with gradient methods”, Numerical Analysis and Application, 15:4 (2012), 393–408 (In Russ.) | Zbl
[7] A. N. Naumov, “On the decision of inverse coefficient problem for filtration equation”, Preprints of Keldysh Institute of Applied Mathematics, 2006, 006, 29 pp. (In Russ.)
[8] S. I. Kabanikhin, A. Hasanov, A.V̇. Penenko, “A gradient descent method for solving an inverse coefficient heat - conduction problem”, Numerical Analysis and Application, 11:1 (2008), 41–51 (In Russ.)
[9] P. N. Vabischevich, A. Yu. Denisenko, “Numerical solution of inverse coefficient problem for a nonlinear parabolic equation”, Mat. Model., 1:8 (1989), 116–126 (In Russ.) | MR
[10] Yu. M. Matsevityi A. V. Multanovskii, “Simultaneous identification of the thermophysical characteristics of ultrahard materials”, High Temperature, 28:5 (1990), 924-929 (In Russ.)
[11] J. Beck, B. Blackwell, C. St. Clair Jr, Inverse heat conduction ill-posed problems, World, Moscow, 1989, 311 pp. (In Russ.)
[12] S. I. Kabanikhin, Inverse and ill-posed problems, Siberian Scientific Publ., Novosibirsk, 2009, 457 pp. (In Russ.)
[13] I. V. Boikov, “On a certain continuous metod for solution of nonlinear operator equation”, Differential equations, 48:48 (2012), 1308–1314 (In Russ.) | Zbl
[14] A. D. Polyanin, Handbook of linear equations of mathematical physics, Fizmatlit Publ., Moscow, 2001, 576 pp. (In Russ.)
[15] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, BINOM. Laboratoriya Znanii Publ., Moscow, 2008, 636 pp. (In Russ.) | MR
[16] I. V. Boikov, V. A. Ryazantsev, “Construstion of adaptive difference schemes for solving heat conduction equations”, University proceedings. Volga region, 2017, no. 1, 68–81 (In Russ.)