Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_1_a7, author = {V. K. Gorbunov and A. G. Lvov}, title = {Inverse problem of the market demand theory and analytical indices of demand}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {89--110}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a7/} }
TY - JOUR AU - V. K. Gorbunov AU - A. G. Lvov TI - Inverse problem of the market demand theory and analytical indices of demand JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 89 EP - 110 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a7/ LA - ru ID - SVMO_2019_21_1_a7 ER -
%0 Journal Article %A V. K. Gorbunov %A A. G. Lvov %T Inverse problem of the market demand theory and analytical indices of demand %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 89-110 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a7/ %G ru %F SVMO_2019_21_1_a7
V. K. Gorbunov; A. G. Lvov. Inverse problem of the market demand theory and analytical indices of demand. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 1, pp. 89-110. http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a7/
[1] A. Mas-Colell, M. Whinston, J. Green, Microeconomic Theory, Oxford Univ. Press, NY, 1995, 981 pp. | Zbl
[2] V. K. Gorbunov, Mathematical model of consumers' demand: Theory and applied potential, Economizdat Publ., Moscow, 2004, 174 pp. (In Russ.)
[3] V. K. Gorbunov, Consumers' demand: Analytical theory and applications, ULSU Publishing, Ulyanovsk, 2015, 264 pp. (In Russ.)
[4] V. K. Gorbunov, Mathematical modeling of market demand: Manual, 2-nd ed., revised, Lan Publishing, Saint Petersburg, 2018, 212 pp. (In Russ.)
[5] A. N. Tikhonov, V. Ya. Arsenin, Methods for solving incorrect problems, Science, M., 1986, 288 pp. (In Russ.)
[6] V. K. Gorbunov, “Regularization of degenerated equations and inequalities under explicit data parameterization”, Journal of Inverse and Ill-Posed Problems, 9:6 (2001), 575–594 | DOI | MR | Zbl
[7] V. K. Gorbunov, “Regularization of nonlinear ill-posed problems with parametrized data”, Nelinejnyi analiz i nelinejnyie differentsial'nije uravnenija, eds. V. A. Trenogin, A. F. Filippov, Fizmatlit Publ., Moscow, 2003, 418–447 (In Russ.) | MR | Zbl
[8] P. Kves, Index Theory and Economic Reality, Fin. and Stat., M., 1990, 304 pp. (In Russ.)
[9] W. E. Diewert, “The consumer price index and index number purpose”, Journal of Economic and Social Measurement, 27 (2001), 167–248 | DOI
[10] P. A. Samuelson, S. Swamy, “Invariant economic index numbers and canonical duality: survey and synthesis”, The American Economic Review, 64:4 (1974), 566–593
[11] W. E. Diewert, “The economic theory of index numbers: a survey”, Essays in the Theory and Measurement of Consumer Behaviour in Honour of Sir Richard Stone, ed. A. Deaton, Cambridge University Press, London, 1981, 163–208 | DOI
[12] V. K. Gorbunov, L. A. Kozlova, “The construction and investigation of quasi-invariant consumption indices”, Sovremennyye technologii. Sistemnyy analis. Modelirovanye, 19:3 (2008), 120–127 (In Russ.)
[13] V. K. Gorbunov, L. A. Kozlova, “The modeling of the market demand and analytical index numbers”, Voprosy statistiki, 6 (2015), 36–45 (In Russ.)
[14] A. A. Konus, “The problem of the true index of the cost of living”, Econometrica, 9–10 (1924), 64–71 (In Russ.)
[15] S. N. Afriat, “The construction of utility functions from expenditure data”, Intern. Economic Review, 8:1 (1967), 67–77 | DOI | Zbl
[16] S. N. Afriat, The index number problem. Construction theorems, Oxford Univ. Press, Oxford, 2014, 220 pp. | MR | Zbl
[17] H. Varian, “The nonparametric approach to demand analysis”, Econometrica, 50:4 (1982), 945–973 | DOI | MR | Zbl
[18] H. Varian, “Non-parametric tests of consumer behaviour”, The Review of Economic Studies, 50:1 (1983), 99–110 | DOI | MR | Zbl
[19] W. E. Diewert, “Afriat and revealed preference theory”, Rev. Econ. Studies, 40 (1973), 419–425 | DOI | Zbl
[20] A. Fleissig, G. Whitney, “Testing for the significance of violations of Afriat's inequalities”, Journal of Business and Economic Statistics, 23:3 (2005), 355–362 | DOI | MR
[21] V. K. Gorbunov, “On linear inequalities of the consumption theory's inverse problem”, Uchenyye zapiski UlGU: Fundamentalnyye problemy matematiki i mekhaniki, 1 (1998), 46–53 (In Russ.)
[22] V. V. Fedorov, Numerical methods for maxmin, Nauka, Moscow, 1979, 280 pp. (In Russ.)
[23] Household food consumption, Statisticheskij byulleten' (vypuski 2008–2018 gg.), (In Russ.) http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/publications/catalog/doc_1140095125312