Pair-wise MHD-interaction of rigid spheres in longitudinal creeping flow
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 1, pp. 78-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Authors describe and study the mathematical model of two identical rigid spheres immersed in highly viscous fluid with magnetic field acting in it. At infinite distance from suspended particles the flow and the field are uniform. The hypothesis that bulk currents are weak allows to split magnetic and hydrodynamic interactions of the spheres. Distribution of magnetic field is obtained for arbitrary orientation of undisturbed field with respect to line going through the spheres' centers and is written in the form of multipole expansion. This expression is used to calculate magnetic force acting on both particles. Together with known expressions for hydrodynamic forces this result may be applied in study of particle dynamics in uniform flow of viscous magnetic fluid. In the paper particular case of field and flow being parallel to line of centers is examined in more detail. The opportunity of particles' coagulation in such flow is discussed.
Mots-clés : viscous fluid, hydrodynamic interaction, coagulation.
Keywords: Stokes equation, creeping flow, suspended particles, magnetic fluid
@article{SVMO_2019_21_1_a6,
     author = {I. P. Boriskina and A. O. Syromyasov},
     title = {Pair-wise {MHD-interaction} of rigid spheres in longitudinal creeping flow},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {78--88},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a6/}
}
TY  - JOUR
AU  - I. P. Boriskina
AU  - A. O. Syromyasov
TI  - Pair-wise MHD-interaction of rigid spheres in longitudinal creeping flow
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2019
SP  - 78
EP  - 88
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a6/
LA  - ru
ID  - SVMO_2019_21_1_a6
ER  - 
%0 Journal Article
%A I. P. Boriskina
%A A. O. Syromyasov
%T Pair-wise MHD-interaction of rigid spheres in longitudinal creeping flow
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2019
%P 78-88
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a6/
%G ru
%F SVMO_2019_21_1_a6
I. P. Boriskina; A. O. Syromyasov. Pair-wise MHD-interaction of rigid spheres in longitudinal creeping flow. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 1, pp. 78-88. http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a6/

[1] A. Enstein, “Eine neue Bestimmung der Molekuldimensionen”, Annalen der Physik, 19 (1906), 289–306 | DOI

[2] G. K. Batchelor, “The stress system in a suspension of force-free particles”, Journal of Fluid Mechanics, 41:3 (1970), 545–570 | DOI | Zbl

[3] G. K. Batchelor, J. T. Green, “The hydrodynamic interaction of two small freely-moving spheres in a linear flow field”, Journal of Fluid Mechanics, 56:2 (1972), 375–400 | DOI | Zbl

[4] G. K. Batchelor, J. T. Green, “The determination of the bulk stress in a suspension of spherical particles to order $c^{2}$”, Journal of Fluid Mechanics, 56:3 (1972), 401–427 | DOI | Zbl

[5] S. I. Martynov, Interaction of particles in a suspension, Kazan Mathematical Society, Kazan, 1998, 135 pp. (In Russ.)

[6] A. A. Zick, G. M. Homsy, “Stokes flow through periodic array of spheres”, Journal of Fluid Mechanics, 115 (1982), 13–26 | DOI | Zbl

[7] A. L. Berdichevsky, “On effective heat conductance of media with periodically located inclusions”, Reports of USSR Academy of Sciences, 247:6 (1979), 1363–1367 (In Russ.) | MR

[8] S. I. Martynov, “Influence of aggregate formation and disruption on the viscosity of magnetic fluid”, Magnetohydrodynamics, 25:1 (1989), 47–52 (In Russ.) | MR

[9] L. I. Sedov, A course in continuum mechanics, v. 1, 6, Lan Publishers, St. Petersburg., 2004, 528 pp. (In Russ.)

[10] I. P. Boriskina, “Interaction of particles in non-uniform magnetic field”, Mordovia University Bulletin, 13:3–4 (2003), 120–123 (In Russ.)

[11] A. O. Syromyasov, “Thermodynamic interaction of spherical particles in a fluid with constant temperature gradient”, Vestnik of Lobachevsky University of Nizhni Novgorod, 4:3 (2011), 1158–1160 (In Russ.)

[12] J. Happel, H. Brenner, Low Reynolds number hydrodynamics, Prentice-Hall, M., 1965, 630 pp.