Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_1_a5, author = {V. N. Anisimov and V. L. Litvinov}, title = {Calculation of the natural frequencies of the transverse of cable oscillations at the area of application of insulation}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {70--77}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a5/} }
TY - JOUR AU - V. N. Anisimov AU - V. L. Litvinov TI - Calculation of the natural frequencies of the transverse of cable oscillations at the area of application of insulation JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 70 EP - 77 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a5/ LA - ru ID - SVMO_2019_21_1_a5 ER -
%0 Journal Article %A V. N. Anisimov %A V. L. Litvinov %T Calculation of the natural frequencies of the transverse of cable oscillations at the area of application of insulation %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 70-77 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a5/ %G ru %F SVMO_2019_21_1_a5
V. N. Anisimov; V. L. Litvinov. Calculation of the natural frequencies of the transverse of cable oscillations at the area of application of insulation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 1, pp. 70-77. http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a5/
[1] V. N. Anisimov, V. L. Litvinov, “Mathematical models of nonlinear longitudinal-cross oscillations of object with moving borders”, Vestn. Samar. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 19:2 (2015), 382–397 (In Russ.) | DOI | Zbl
[2] V. N. Anisimov, V. L. Litvinov, “Comparative analysis of linear and nonlinear models describing oscillations of systems with moving boundaries”, Proceedings of the X All-Russian Conference on Solid Mechanics (September 18–22, 2017, Samara, Russia), Samara State Technical University, Samara, 2017, 35–39 (In Russ.)
[3] O. A. Goroshko, G. N. Savin, Introduction in mechanics of one dimensional deformable bodies of variable length, Naukova Dumka, Kiev, 1971, 270 pp. (In Russ.)
[4] A. I. Vesnitskii, Vaves in systems with moving boundaries and loads, Fizmatlit, Moscow, 2001, 320 pp. (In Russ.)
[5] S. M. Sahebkar, M. R. Ghazavi, S. E. Khadem, M. H. Ghayesh, “Nonlinear vibration analysis of an axially moving drill string system with time dependent axial load and axial velocity in inclined well”, Mech. and Mach.Theory, 46:5 (2011), 743–760 | DOI | Zbl
[6] V. N. Anisimov, V. L. Litvinov, “Transverse vibrations of a rope moving in the longitudinal direction”, News of the Samara Scientific Center of the Russian Academy of Sciences, 19:4 (2017), 161–165 (In Russ.)
[7] W. D. Zhu, Y. Chen, “Theoretical and experimental investigation of elevator cable dynamics and control”, Trans. ASME. J. Vibr. And Acoust., 128:1 (2006), 66–78 | DOI
[8] A. I. Vesnitsky, A. I. Potapov, “Transverse oscillations of ropes in mine hoists”, Dynamics of systems, 7 (1975), 84–89 (In Russ.)
[9] L. O. Kechedgiyan, N. A. Pinchuk, A. M. Stolyar, “A problem of mathematical physics with moving boundary”, Vest.Vuzov North-Kaukaz. Region.Natural Sciences, 1 (2008), 22–27 (In Russ.) | Zbl
[10] A. A. Lezhneva, “Bending vibration of beam of variable length”, Izv. Acad. Nauk USSR. Mechanic of solidstate, 1 (1970), 159–161 (In Russ.)
[11] W. D. Zhu, N. A. Zheng, “Exact response of a translating string with arbitrarily varying length under general excitation”, Trans. ASME. J. Appl.Mech., 75:3 (2008), 031003 | DOI
[12] V. N. Anisimov, V. L. Litvinov, “Investigation of lateral vibrations of a rope moving in the longitudinal direction”, “Mathematical Modeling, Numerical Methods and Program Complexes” named after E.V. Voskresensky, Proceedings of the VIII International Scientific Youth School-Seminar, Middle Volga Mathematical Society, Saransk, 2018, 120–125 (In Russ.)
[13] V. N. Anisimov, V. L. Litvinov, “Calculation of natural frequencies of transverse vibrations of a viscoelastic rope moving in the longitudinal direction and having flexural rigidity”, Mathematical modeling and boundary value problems, Proceedings of the Fifth All-Russian Scientific Conference with international participation, v. 1, Samara State Technical University, Samara, 2008, 38–42 (In Russ.)
[14] V. S. Tikhonov, A. A. Abramov, “Transverse oscillations of a flexible thread of variable length in the flow”, Vestnik MGU. Ser. 1, 5 (1993), 45–48 (In Russ.) | Zbl
[15] K. I. Ragulsky, “Questions of dynamics of precision tape drive mechanisms”, Dynamics of cars, Nauka Publ., M., 1971, 169–-177 (In Russ.)
[16] Yu. P. Samarin, “About one nonlinear task for the wave equation in one-dimensional space”, Applied mathematics and mechanics, 26:3 (1964), 77–80 (In Russ.)
[17] V. I. Erofeev, D. A. Kolesov, E. E. Lisenkova, “Investigation of wave processes in a one-dimensional system lying on an elastic-inertial base, with a moving load”, Bulletin of Scientific and Technical Development, 62:6 (2013), 18–29 (In Russ.)
[18] Kotera Tadashi, “Vibration of a string with time-varying length”, Bulleten Japan Sosietyof Mechanical Engineers, 21:162 (1978), 1677–1684 | DOI | MR
[19] V. N. Anisimov, V. L. Litvinov, I. V. Korpen, “Use of the Kantorovich-Galerkin method for solving boundary value problems with conditions on moving boundaries”, News of the Russian Academy of Sciences. Solid mechanics, 2 (2018), 70–77 (In Russ.)
[20] Hu Ding, Li-Qun Chen, “Galerkin methods for natural frequencies of high-speed axially moving beams”, J. Sound and Vibr., 329:17 (2010), 3484–3494 | DOI