Construction of exact solutions and analysis of stability of complex systems by reduction to ordinary differential equations with power nonlinearities
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 1, pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Complex systems described by nonlinear partial differential equations of parabolic type or large-scale systems of ordinary differential equations with switching right-side are considered. The reduction method is applied to the corresponding problem for the system of ordinary differential equations without switching. A parametric family of time-periodic and anisotropic on spatial variables exact solutions of the reaction-diffusion system is constructed. The stability conditions of a large-scale system with switching are obtained, which consist in checking the stability of the reduced system without switching. The conditions for the existence of the first integrals for the reduced system of ordinary differential equations expressed by a combination of power and logarithmic functions are found. For the cases of two-dimensional and three-dimensional reduced systems, these conditions are written in the form of polynomial equations relating the system parameters.
Keywords: complex systems, large-scale switching systems, stability, reaction-diffusion systems, first integrals.
Mots-clés : exact solutions
@article{SVMO_2019_21_1_a4,
     author = {A. A. Kosov and \`E. I. Semenov},
     title = {Construction of exact solutions and analysis of stability of complex systems by reduction to ordinary differential equations with power nonlinearities},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {60--69},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a4/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - È. I. Semenov
TI  - Construction of exact solutions and analysis of stability of complex systems by reduction to ordinary differential equations with power nonlinearities
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2019
SP  - 60
EP  - 69
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a4/
LA  - ru
ID  - SVMO_2019_21_1_a4
ER  - 
%0 Journal Article
%A A. A. Kosov
%A È. I. Semenov
%T Construction of exact solutions and analysis of stability of complex systems by reduction to ordinary differential equations with power nonlinearities
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2019
%P 60-69
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a4/
%G ru
%F SVMO_2019_21_1_a4
A. A. Kosov; È. I. Semenov. Construction of exact solutions and analysis of stability of complex systems by reduction to ordinary differential equations with power nonlinearities. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 1, pp. 60-69. http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a4/

[1] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations. Second Edition, Updated, Revised and Extended, Chapman $\$ Hall/CRC Press, Boca Raton-London-New York, 2012, 1912 pp. | MR

[2] J. D. Murray, Mathematical biology. I. An Introduction, Springer, 2002, 552 pp. | MR

[3] J. L. Vazquez, The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2007 | MR | Zbl

[4] A. D. Polyanin, A. M. Kutepov, A. V. Vyazmin, D. A. Kazenin, Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Taylor $\$ Francis, London–New York, 2002, 387 pp.

[5] V. A. Galactionov, S. R. Svirshchevskii, Subspaces of nonlinear partial differential equations in mechanics and physics, Chapman $\$ Hall/CRC, 2007, 493 pp. | MR

[6] G. A. Rudykh, E. I. Semenov, “Construction of exact solutions of the multidimensional quasilinear heat equation”, Computational Mathematics and Mathematical Physics, 33:8 (1993), 1087-1097 | MR | Zbl

[7] D. D. Šiljak, Large-scale dynamic systems: stability and structure, North-Holland, New York, 1978, 416 pp. | MR

[8] V. D. Blondel, A. Megretski (eds.), Unsolved Problems in Mathematical Systems and Control Theory, Princeton University Press, Princeton–Oxford, 2004 | Zbl

[9] R. Shorten, F. Wirth, O. Mason, K. Wulf, C. King, “Stability criteria for switched and hybrid systems”, SIAM Rev, 49:4 (2007), 545-592 | DOI | MR | Zbl

[10] Hai Lin, P. J. Antsaklis, “Stability and stabilizability of switched linear systems: a survey of recent results”, IEEE Trans. Automat. Contr., 54:2 (2009), 308-322 | DOI | MR | Zbl

[11] V. M. Matrosov, The Method of Vector Lyapunov Functions: Analysis of Dynamical Properties of Nonlinear Systems, Fizmatlit, Moscow, 2001 (In Russ.)

[12] B. P. Belousov, The collection of papers on radiation medicine during 1958, Medgiz, Moscow, 1959, 145 pp. (In Russ.)

[13] J. J. Morgan, S. L. Hollis, “The existence of periodic solutions to reaction-diffusion systems with periodic data”, SIAM J. Math. Anal., 26:5 (1995), 1225-1232 | DOI | MR | Zbl

[14] Sandro Merino., “Positive periodic solutions for semilinear reaction diffusion systems on $\mathbb{R}^{N}$”, Advances in Differential Equations, 1:4 (1996), 579-609 | MR | Zbl

[15] N. N. Nefedov, E. I. Nikulin, “Existence and Stability of Periodic Solutions for Reaction-Diffusion Equations in the Two-Dimensional Case”, Modeling and Analysis of Information Systems, 23:3 (2016), 342-348 | DOI | MR

[16] S. N. Vassilyev, A. A. Kosov, A. I. Malikov, “Stability Analysis of Nonlinear Switched Systems via Reduction Method” (Milano, Italy, August 28–September 2 2011), IFAC Proceedings Volumes, 44:1, Proceedings of the 18th IFAC World Congress, 5718-5723

[17] A. Yu. Aleksandrov, A. A. Kosov, A. V. Platonov, “On the asymptotic stability of switched homogeneous systems”, Systems $\$ Control Letters, 61:1 (2012), 127-133 | DOI | MR | Zbl