Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_1_a3, author = {A. A. Sarsenbi}, title = {The ill-posed problem for the heat transfer equation with involution}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {48--59}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a3/} }
TY - JOUR AU - A. A. Sarsenbi TI - The ill-posed problem for the heat transfer equation with involution JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 48 EP - 59 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a3/ LA - ru ID - SVMO_2019_21_1_a3 ER -
A. A. Sarsenbi. The ill-posed problem for the heat transfer equation with involution. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 1, pp. 48-59. http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a3/
[1] D. Przeworska-Rolewicz, Equations with transformed argument:an algebraic approach, PWN Elsevier, Amsterdam–Warszawa, 1973, 354 pp. | MR | Zbl
[2] J. Wiener, Generalized solutions of functional differential equations, PWN Elsevier, Singapore–New Jersey–London–Hong Kong, 1993, 410 pp.
[3] A. Kopzhassarova, A. L. Lukashov, A. Sarsenbi, “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution”, Abstract and Applied Analysis, 2012, no. 4, 590781 | DOI | MR
[4] M. Sh. Burlutskaya, “Mixed problem for a first order partial differential equations with involution and periodic boundary conditions”, Comput. Mathematics and Math. Physics, 54:1 (2014), 3–12 | DOI | MR | Zbl
[5] A. G. Baskakov, I. A. Krishtal, E. A. Romanova, “Spectral analysis of a differential operator with an involution”, Journal of Evolution Equations, 17:2 (2017), 669–684 | DOI | MR | Zbl
[6] A. M. Sarsenbi, “Unconditional bases related to a nonclassical second-order differential operator”, Differential Equations, 46:4 (2010), 509–511 | DOI | MR | Zbl
[7] L. V. Kritskov, A. M. Sarsenbi, “Spectral properties of a nonlocal problem for second order differential equation with an involution”, Differential Equations, 51:8 (2015), 990–996 | DOI | MR | Zbl
[8] L. V. Kritskov, A. M. Sarsenbi, “Basicity in Lp of root functions for differential equations with involution”, Electronic Journal of Differential Equations, 2015:278 (2015), 1–9 | MR
[9] L. V. Kritskov, A. M. Sarsenbi, “Riesz basis property of system of root functions of second-order differential operator with involution”, Differential Equations, 53:1 (2017), 33–46 | DOI | MR | Zbl
[10] L. V. Kritskov, A. M. Sarsenbi, “Equiconvergence property for spectral expansions related to perturbations of the operator $-{u}''\left( -x \right)$ with initial data”, Filomat, 32:3 (2018), 1069–1078 | DOI | MR
[11] A. A. Sarsenbi, “Completeness and basicity of the eigenfunctions of the spectral problem with involution”, Matematicheskiy zhurnal, 17:2(64) (2017), 175–183 (In Russ.) | MR
[12] A. Cabada, F. A. F. Tojo, “On linear differential equations and systems with reflection”, Appl. Math. Comp., 305 (2017), 84–102 | DOI | MR | Zbl
[13] M. Kirane, N. Al-Salti, “Inverse problems for a nonlocal wave equation with an involution perturbation”, J. Nonlinear Sci. Appl., 9 (2016), 1243–1251 | DOI | MR | Zbl
[14] A. A. Sarsenbi, “On a class of inverse problems for a parabolic equation with involution”, AIP Conference Proceedings, 1880 (2017), 040021 | DOI
[15] M. J. Ablowitz, H. Z. Musslimani, “Integrable nonlocal nonlinear Schredinger equation”, Physical Review Letters, 110 (2013), 064105 | DOI
[16] A. M. Akhtyamov, I. M. Utyashev, “Restoration of polynomial potential in the Sturm-Liouville problem”, Zhurnal srednevolzhskogo matematicheskogo obshchestva, 20:2 (2018), 148–158 (In Russ.) | MR
[17] A. Ashyralyev, A. Sarsenbi, “Well-posedness of a parabolic equation with involution”, Numerical Functional Analysis and Optimization, 38:10 (2017), 1295–1304 | DOI | MR | Zbl
[18] A N. Tikhonov, A. A. Samarskiy, Equation of mathematical physics, Nauka Publ., Moscow, 1972, 736 pp. (In Russ.) | MR
[19] M. A. Naymark, “On some signs of completeness of the system of eigenvectors and associated vectors of a linear operator in a Hilbert space”, Doklady Akademii nauk SSSR, 98:5 (1954), 727–730 (In Russ.) | Zbl
[20] E. A. Koddington, N. Levinson, Theory of ordinary differential equations, Inostrannaya literatura Publ., Moscow, 1958, 474 pp. (In Russ.)