Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_1_a2, author = {V. G. Malinov}, title = {Continuous second order minimization method with variable metric projection operator}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {34--47}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a2/} }
TY - JOUR AU - V. G. Malinov TI - Continuous second order minimization method with variable metric projection operator JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 34 EP - 47 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a2/ LA - ru ID - SVMO_2019_21_1_a2 ER -
V. G. Malinov. Continuous second order minimization method with variable metric projection operator. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 1, pp. 34-47. http://geodesic.mathdoc.fr/item/SVMO_2019_21_1_a2/
[1] A. S. Antipin, “Continuous and iterative proceses with projection ana projection-type operators”, Voprosy kibernetiki. Vychislitelnie voprosy analiza bolshih sistem, AN SSSR Publ., Moscow, 1989, 5–43 (In Russ.)
[2] A. S. Antipin, “Minimization of convex functions on convex sets by differential equations”, Differential equations, 30:9 (1994), 1365–1375 (In Russ.) | MR | Zbl
[3] A. S. Antipin, F. P. Vasil'ev, “On continuous method of minimization in variable metric spaces”, Russian Mathematics, 39:12 (1995), 1–6 (In Russ.) | Zbl
[4] T. V. Amochkina, “Continuous second order variable metric gradient projection method”, Journal of Computational Mathematics and Mathematical Physics, 37:10 (1997), 1134–1142 (In Russ.) | MR
[5] V. G. Malinov, “Continuous projection variable metric second order minimization method”, Functionalniy analiz, 39 (2006), 53–64, UlPU Publ., Ulyanovsk (In Russ.)
[6] V. G. Malinov, “On the version of continuous projection second order variable metric method”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 16:1 (2014), 121–134 (In Russ.) | Zbl
[7] V. G. Malinov, “Continuous second order minimization method with variable metric projection operator”, VIII Moscow International Conference on Operations Research(ORM2016): Moscow, October 17–22, 2016: Proceedings (Moscow, October 17-22, 2016), v. II, FRC CSC RAS Publ., Moscow, 48–50 (In Russ)
[8] V. G. Malinov, “PGTM with variable metric projection operator”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 14:4 (2012), 44–56 (In Russ.)
[9] F. P. Vasil'ev, Numerical methods solution of Extremal problems, Nauka Publ., Moscow, 1988, 552 pp. (In Russ.)
[10] A. N. Kolmogorov, S. V. Fomin, Elements of function theory and functional analysis, Nauka Publ., Moscow, 1976, 544 pp. (In Russ.) | MR
[11] A. S. Antipin, Methods of nonlinear programming, based on direct and dual modifications Lagrange function, VNII systems research Publ., Moscow, 1979, 73 pp. (In Russ.)