Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_4_a9, author = {A. O. Syromyasov}, title = {Modeling of interaction of different-sized objects immersed in weal electrolyte}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {460--472}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a9/} }
TY - JOUR AU - A. O. Syromyasov TI - Modeling of interaction of different-sized objects immersed in weal electrolyte JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 460 EP - 472 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a9/ LA - ru ID - SVMO_2018_20_4_a9 ER -
A. O. Syromyasov. Modeling of interaction of different-sized objects immersed in weal electrolyte. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 460-472. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a9/
[1] P. Habdas, E. R. Weeks, “Video microscopy of colloidal suspensions and colloidal crystals”, Current Opinion in Colloid and Interface Science, 7 (2002), 196–203 | DOI
[2] I. F. Efremov, Periodic colloidal structures, Khimiya Publ., Leningrad, 1971, 192 pp. (In Russ.)
[3] M. F. Hsu, E. R. Dufresne, D. A. Weitz, “Charge stabilization in nonpolar solvents”, Langmuir, 21 (2005), 4881–4887 | DOI
[4] G. A. Ostroumov, Interaction of electrical and hydrodynamical fields. Physical foundations of electrohydrodynamics, Nauka Publ., Moscow, 1979, 320 pp. (In Russ.)
[5] E. J. W. Verwey, J. Th. G. Overbeek, Theory of the stability of lyophobic colloids, Elsevier publishing company, Inc., New York-Amsterdam-London-Brussels, 1948, i-xii, 205 pp.
[6] J. Zhu, Min Li, R. Rogers [et al.], “Crystallization of hard-sphere colloids in microgravity”, Nature, 387 (1997), 883–885 | DOI
[7] E. Yariv, “Electro-hydrodynamic particle levitation on electrodes”, Journal of Fluid Mechanics, 645 (2010), 187–210 | DOI | MR | Zbl
[8] M. Wu, A. V. Kuznetsov, W. J. Jasper, “Modeling of particle trajectories in an electrostatically charged channel”, Phys. Fluids, 22:4 (2010) | Zbl
[9] H. Liu, H. H. Bau, “The dielectrophoresis of cylindrical and spherical particles submerged in shells and in semi-infinite media”, Phys. Fluids, 16:5 (2004), 1217–1228 | DOI
[10] A. O. Syromyasov, N. V. Eremkina, “Mathematical modelling of electrostatic interaction among two identical spheres surrounded by double electric layers”, Zhurnal Sredne-Volzhskogo matematicheskogo obshchestva, 17:3 (2015), 100–108. (In Russ.) | Zbl
[11] V. V. Lokhin, L. I. Sedov, “Nonlinear tensor functions depending on several tensor arguments”, Journal of Applied Mathematics and Mechanics, 27:3 (1963), 393–417. (In Russ.) | MR
[12] L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960, 429 pp.
[13] F. H. Stillinger Jr., “Interfacial solutions of the Poisson-Boltzmann equation”, J. Chem. Phys., 35:5 (1961), 1584–1589 | DOI | MR
[14] R. Klein, H. H. von Grünberg, “Charge-stabilized colloidal suspensions. Phase behavior and effects of confinement”, Pure and Applied Chemistry, 73:11 (2001), 1705–1719 | DOI
[15] J. Happel, H. Brenner, Low Reynolds number hydrodynamics, Prentice-Hall, 1965, 553 pp.
[16] V. L. Sennitskii, “Force interaction of a sphere and a viscous fluid in the presence of a wall”, Journal of Applied Mechanics and Technical Physics, 41:1 (2000), 50–54 (In Russ.) | MR
[17] V. E. Baranov, S. I. Martynov, “Simulation of particle dynamics in a viscous fluid near a plane wall”, Computational Mathematics and Mathematical Physics, 50:9 (2010), 1588 – 1604 (In Russ.) | MR | Zbl