Approximation of a mixed boundary value problem
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 429-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mixed boundary value problem for the divergent-type elliptic equation with variable coefficients is considered. It is assumed that the integration domain has a sufficiently smooth boundary that is the union of two disjoint pieces. The Dirichlet boundary condition is given on the first piece, and the Neumann boundary condition is given on the other one. So the problem has discontinuous boundary condition. Such problems with mixed boundary conditions are the most common in practice when modeling processes and are of considerable interest in the development of methods for their solution. In particular, a number of problems in the theory of elasticity, theory of diffusion, filtration, geophysics, a number of problems of optimization in electro-heat and mass transfer in complex multielectrode electrochemical systems are reduced to the boundary value problems of this type. In this paper, we propose an approximation of the original mixed boundary value problem by the third boundary value problem with a parameter. The convergence of the proposed approximations is investigated. Estimates of the approximations’ convergence rate in Sobolev norms are established.
Mots-clés : Elliptic equations, Sobolev spaces
Keywords: mixed boundary value problem, embedding theorems, approximation, convergence of approximations.
@article{SVMO_2018_20_4_a6,
     author = {F. V. Lubyshev and M. \`E. Fairuzov},
     title = {Approximation of a mixed boundary value problem},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {429--438},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a6/}
}
TY  - JOUR
AU  - F. V. Lubyshev
AU  - M. È. Fairuzov
TI  - Approximation of a mixed boundary value problem
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 429
EP  - 438
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a6/
LA  - ru
ID  - SVMO_2018_20_4_a6
ER  - 
%0 Journal Article
%A F. V. Lubyshev
%A M. È. Fairuzov
%T Approximation of a mixed boundary value problem
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 429-438
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a6/
%G ru
%F SVMO_2018_20_4_a6
F. V. Lubyshev; M. È. Fairuzov. Approximation of a mixed boundary value problem. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 429-438. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a6/

[1] V. L. Rvachev, A. P. Slesarenko, Logic algebra and integral transformations in boundary value problems, Naukova dumka, Kiev, 1976, 288 pp. (In Russ.)

[2] I. I. Lyashko, I. M. Velikoivanenko, A numerical-analytical solution of boundary value problems of filtration theory, Naukova dumka, Kiev, 1973, 264 pp. (In Russ.) | MR

[3] I. N. Molchanov, Numerical methods for solving some problems in the theory of elasticity, Naukova dumka, Kiev, 1979, 316 pp. (In Russ.) | MR

[4] K. Brebbiya, Zh. Telles, L. Vroubel, Boundary element methods, Mir, M., 1987, 524 pp. (In Russ.) | MR

[5] F. S'yarle, Finite Element Method for Elliptic Problems, Mir, M., 1980, 512 pp. (In Russ.)

[6] R. Glovinski, Zh.-L. Lions, R. Tremol'yer, Numerical study of variational inequalities, Mir, M., 1979, 576 pp. (In Russ.)

[7] K. Bayokki, A. Kapelo, Variational and quasi-variational inequalities, Nauka, M., 1988 (In Russ.) | MR

[8] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Nauka, M., 1989, 464 pp. (In Russ.)

[9] Zh.-P. Oben, Approximate solution of elliptic boundary value problems, Mir, M., 1977, 384 pp. (In Russ.)

[10] D. Kinderlerer, G. Stampakk'ya, Introduction to variational inequalities and their applications, Mir, M., 1983, 256 pp. (In Russ.) | MR

[11] A. A. Samarskij, R. D. Lazarov, V. L. Makarov, Difference schemes for differential equations with generalized solutions, Vysshaya shkola, M., 1987, 296 pp. (In Russ.)

[12] A. A. Samarskij, P. N. Vabishchevich, Computational heat transfer, Librokom, M., 2009, 784 pp. (In Russ.)

[13] K. Rektoris, Variational methods in mathematical physics and technology, Mir, M., 1985, 592 pp. (In Russ.)

[14] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Solution of variational inequalities in mechanics, Mir, M., 1986, 272 pp. (In Russ.) | MR

[15] R. Temam, Mathematical problems of plasticity theory, Nauka, M., 1991, 288 pp. (In Russ.)

[16] Ya. A. Kamenyarzh, Limit analysis of plastic bodies and structures, Nauka, M., 1997, 512 pp. (In Russ.) | MR

[17] I. I. Vorovich, Mathematical problems of the nonlinear theory of shallow shells, Nauka, M., 1989, 376 pp. (In Russ.)

[18] F. S'yarle, P. Rab'ye, Karman equations, Mir, M., 1983, 172 pp. (In Russ.) | MR

[19] G. I. Marchuk, V. I. Agoshkov, Introduction to projection methods, Nauka, M., 1981, 416 pp. (In Russ.) | MR

[20] A. Kufner, S. Fuchik, Nonlinear differential equations, Nauka, M., 1988, 304 pp. (In Russ.)

[21] M. I. Vishik, G. I. Eskin, “Elliptic convolution equations in a bounded domain and their applications”, Russian Mathematical Surveys, 22:3 (1967), 13–15 | MR | Zbl

[22] V. P. Mikhaylov, Partial differential equations, Nauka, M., 1976, 394 pp. (In Russ.)

[23] G. Dyuvo, Zh.-L. Lions, Inequalities in mechanics and physics, Nauka, M., 1980, 384 pp. (In Russ.)