Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_4_a6, author = {F. V. Lubyshev and M. \`E. Fairuzov}, title = {Approximation of a mixed boundary value problem}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {429--438}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a6/} }
TY - JOUR AU - F. V. Lubyshev AU - M. È. Fairuzov TI - Approximation of a mixed boundary value problem JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 429 EP - 438 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a6/ LA - ru ID - SVMO_2018_20_4_a6 ER -
F. V. Lubyshev; M. È. Fairuzov. Approximation of a mixed boundary value problem. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 429-438. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a6/
[1] V. L. Rvachev, A. P. Slesarenko, Logic algebra and integral transformations in boundary value problems, Naukova dumka, Kiev, 1976, 288 pp. (In Russ.)
[2] I. I. Lyashko, I. M. Velikoivanenko, A numerical-analytical solution of boundary value problems of filtration theory, Naukova dumka, Kiev, 1973, 264 pp. (In Russ.) | MR
[3] I. N. Molchanov, Numerical methods for solving some problems in the theory of elasticity, Naukova dumka, Kiev, 1979, 316 pp. (In Russ.) | MR
[4] K. Brebbiya, Zh. Telles, L. Vroubel, Boundary element methods, Mir, M., 1987, 524 pp. (In Russ.) | MR
[5] F. S'yarle, Finite Element Method for Elliptic Problems, Mir, M., 1980, 512 pp. (In Russ.)
[6] R. Glovinski, Zh.-L. Lions, R. Tremol'yer, Numerical study of variational inequalities, Mir, M., 1979, 576 pp. (In Russ.)
[7] K. Bayokki, A. Kapelo, Variational and quasi-variational inequalities, Nauka, M., 1988 (In Russ.) | MR
[8] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Nauka, M., 1989, 464 pp. (In Russ.)
[9] Zh.-P. Oben, Approximate solution of elliptic boundary value problems, Mir, M., 1977, 384 pp. (In Russ.)
[10] D. Kinderlerer, G. Stampakk'ya, Introduction to variational inequalities and their applications, Mir, M., 1983, 256 pp. (In Russ.) | MR
[11] A. A. Samarskij, R. D. Lazarov, V. L. Makarov, Difference schemes for differential equations with generalized solutions, Vysshaya shkola, M., 1987, 296 pp. (In Russ.)
[12] A. A. Samarskij, P. N. Vabishchevich, Computational heat transfer, Librokom, M., 2009, 784 pp. (In Russ.)
[13] K. Rektoris, Variational methods in mathematical physics and technology, Mir, M., 1985, 592 pp. (In Russ.)
[14] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Solution of variational inequalities in mechanics, Mir, M., 1986, 272 pp. (In Russ.) | MR
[15] R. Temam, Mathematical problems of plasticity theory, Nauka, M., 1991, 288 pp. (In Russ.)
[16] Ya. A. Kamenyarzh, Limit analysis of plastic bodies and structures, Nauka, M., 1997, 512 pp. (In Russ.) | MR
[17] I. I. Vorovich, Mathematical problems of the nonlinear theory of shallow shells, Nauka, M., 1989, 376 pp. (In Russ.)
[18] F. S'yarle, P. Rab'ye, Karman equations, Mir, M., 1983, 172 pp. (In Russ.) | MR
[19] G. I. Marchuk, V. I. Agoshkov, Introduction to projection methods, Nauka, M., 1981, 416 pp. (In Russ.) | MR
[20] A. Kufner, S. Fuchik, Nonlinear differential equations, Nauka, M., 1988, 304 pp. (In Russ.)
[21] M. I. Vishik, G. I. Eskin, “Elliptic convolution equations in a bounded domain and their applications”, Russian Mathematical Surveys, 22:3 (1967), 13–15 | MR | Zbl
[22] V. P. Mikhaylov, Partial differential equations, Nauka, M., 1976, 394 pp. (In Russ.)
[23] G. Dyuvo, Zh.-L. Lions, Inequalities in mechanics and physics, Nauka, M., 1980, 384 pp. (In Russ.)