On embedding of invariant manifolds of the simplest Morse-Smale flows with heteroclinical intersections
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 378-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a structure of four-dimensional phase space decomposition on trajectories of Morse-Smale flows admitting heteroclinical intersections. More precisely, we consider a class $G(S^4)$ of Morse-Smale flows on the sphere $S^4$ such that for any flow $f\in G(S^4)$ its non-wandering set consists of exactly four equilibria: source, sink and two saddles. Wandering set of such flows contains finite number of heteroclinical curves that belong to intersection of invariant manifolds of saddle equilibria. We describe a topology of embedding of saddle equilibria’s invariant manifolds; that is the first step in the solution of topological classification problem. In particular, we prove that the closures of invariant manifolds of saddle equlibria that do not contain heteroclinical curves are locally flat 2-sphere and closed curve. These manifolds are attractor and repeller of the flow. In set of orbits that belong to the basin of attraction or repulsion we construct a section that is homeomoprhic to the direct product $\mathbb{S}^{2}\times \mathbb{S}^1$. We study a topology of intersection of saddle equlibria’s invariant manifolds with this section.
Keywords: topological equivalence, Morse-Smale flows, heteroclinic curves.
@article{SVMO_2018_20_4_a1,
     author = {E. Ya. Gurevich and D. A. Pavlova},
     title = {On embedding of invariant manifolds of the  simplest {Morse-Smale} flows with heteroclinical intersections},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {378--383},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a1/}
}
TY  - JOUR
AU  - E. Ya. Gurevich
AU  - D. A. Pavlova
TI  - On embedding of invariant manifolds of the  simplest Morse-Smale flows with heteroclinical intersections
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 378
EP  - 383
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a1/
LA  - ru
ID  - SVMO_2018_20_4_a1
ER  - 
%0 Journal Article
%A E. Ya. Gurevich
%A D. A. Pavlova
%T On embedding of invariant manifolds of the  simplest Morse-Smale flows with heteroclinical intersections
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 378-383
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a1/
%G ru
%F SVMO_2018_20_4_a1
E. Ya. Gurevich; D. A. Pavlova. On embedding of invariant manifolds of the  simplest Morse-Smale flows with heteroclinical intersections. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 378-383. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a1/

[1] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “On the structure of the carrier variety for Morse Smale systems without heteroclinic intersections”, Trudy matematicheskogo instituta V. A. Steklov, 297 (2017), 201–210 (In Russ.) | DOI | MR | Zbl

[2] E.Y. Gurevich, D.A. Pavlova, “On the simplest Morse-Smale flows with heteroclinic intersections on the sphere $S^n$”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 19:2 (2017), 25–30 (In Russ.) | Zbl

[3] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[4] E. V. Zhuzhoma, V. S. Medvedev, “Morse-Smale systems with few non-wandering points”, Topology and its Applications, 160:3 (2013), 498–507 | DOI | MR | Zbl

[5] K.R. Meyer, “Energy functions for Morse Smale systems”, American Journal of Mathematics, 90:4 (1968), 1031–1040 | DOI | MR | Zbl

[6] J. C. Cantrell, C. H. Edwards, “Almost locally flat imbeddings of minifolds”, The Michigan Mathematical Journal, 1965:2, 217–223 | MR | Zbl

[7] Y. Matsumoto, An introduction to Morse theory, Oxford University Press, 2001 | MR

[8] C. Gordon, J. Luecke, “Knots are determined by their complements”, Journal American Mathematical Society, 2:2 (1989), 371–415 | DOI | MR | Zbl