Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_4_a1, author = {E. Ya. Gurevich and D. A. Pavlova}, title = {On embedding of invariant manifolds of the simplest {Morse-Smale} flows with heteroclinical intersections}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {378--383}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a1/} }
TY - JOUR AU - E. Ya. Gurevich AU - D. A. Pavlova TI - On embedding of invariant manifolds of the simplest Morse-Smale flows with heteroclinical intersections JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 378 EP - 383 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a1/ LA - ru ID - SVMO_2018_20_4_a1 ER -
%0 Journal Article %A E. Ya. Gurevich %A D. A. Pavlova %T On embedding of invariant manifolds of the simplest Morse-Smale flows with heteroclinical intersections %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 378-383 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a1/ %G ru %F SVMO_2018_20_4_a1
E. Ya. Gurevich; D. A. Pavlova. On embedding of invariant manifolds of the simplest Morse-Smale flows with heteroclinical intersections. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 378-383. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a1/
[1] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “On the structure of the carrier variety for Morse Smale systems without heteroclinic intersections”, Trudy matematicheskogo instituta V. A. Steklov, 297 (2017), 201–210 (In Russ.) | DOI | MR | Zbl
[2] E.Y. Gurevich, D.A. Pavlova, “On the simplest Morse-Smale flows with heteroclinic intersections on the sphere $S^n$”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 19:2 (2017), 25–30 (In Russ.) | Zbl
[3] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[4] E. V. Zhuzhoma, V. S. Medvedev, “Morse-Smale systems with few non-wandering points”, Topology and its Applications, 160:3 (2013), 498–507 | DOI | MR | Zbl
[5] K.R. Meyer, “Energy functions for Morse Smale systems”, American Journal of Mathematics, 90:4 (1968), 1031–1040 | DOI | MR | Zbl
[6] J. C. Cantrell, C. H. Edwards, “Almost locally flat imbeddings of minifolds”, The Michigan Mathematical Journal, 1965:2, 217–223 | MR | Zbl
[7] Y. Matsumoto, An introduction to Morse theory, Oxford University Press, 2001 | MR
[8] C. Gordon, J. Luecke, “Knots are determined by their complements”, Journal American Mathematical Society, 2:2 (1989), 371–415 | DOI | MR | Zbl